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Due to its chaotic nature, the wind behavior is difficult to forecast. Predicting wind power is a real
challenge for dispatchers who need to estimate renewable generation in advance to establish their
strategies. To achieve an accurate wind power prediction, it is important to determine first which
meteorological data need to be included in the predictor. For that purpose, this paper focuses on
choosing the appropriate weather factors, namely spatially averaged wind speed and wind direction.
These factors are selected according to correlation and importance measures. Then, the random forest
method is proposed to build an hour-ahead wind power predictor. The random forest does not need to be
tuned or optimized, contrary to most other learning machines. Both point and probabilistic forecasts are
performed using the same inputs. The emphasis is put on the effect of wind speed and direction on the
model performance, and the immunity of random forest to irrelevant inputs. The wind data used to test
the proposed model are taken from Sidi Daoud wind farm in Tunisia. Results show an interesting
improvement of forecast accuracy using the proposed model, as well as an important reduction of the
different error criteria compared to classical neural network prediction.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy has gained much attention by the end of the 20th
century. It is one of the most used renewable energy resources
worldwide, and it is getting more and more interesting for coun-
tries aiming to reduce their dependence on fossil fuels. For re-
searchers, the challenge is to achieve maximum benefits from this
resource without generating any disturbance or danger for actual
power installations. According to the global wind statistics [1], the
global wind power capacity at the end of 2015 is 432419 MW, and it
is in continuous expansion for more than 20 years. In Tunisia, the
installed capacity reached 245 MW provided by two wind farms
with a total contribution of about 3.6% in the national production.
China, the world leader, has 145104 MW of wind power installed
capacity, including 30500 MW installed only in 2015 [1]. These
recent and huge installations prove the world's trend towards
renewable energy exploitation.
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Since wind power is one of the most promising energy alter-
native resources, it is important to deal with challenges related to
its integration in power grids, namely variability, additional costs,
planning, transmission, etc [2]. The main problem often encoun-
tered is intermittency of wind, which induces grid instability and
may lead either to lack or waste in energy. In general, a complete
study about variability of wind should be done before installing any
wind farm [3]. It is not possible to manage the wind blow, however,
it is possible to predict its behavior, and this is the essence of wind
power forecast. As a simple definition, predicting wind power
means to estimate the expected power output of wind turbines for
a period of time in the future, through one or many time steps. This
period of time is called forecast horizon, and according to its length,
short and long term are defined. There is no universal definition of
what a short or a long term forecast is. But in general, short term
ranges from one to few hours of prediction in advance, useful for
planing dispatch and keeping the network stability. The long term
is extended to few days in advance or even more, and it is useful for
wind turbines' maintenance [4]. Obviously, the prediction perfor-
mance varies from very short to long term [5], as well as the fore-
casting interests and applications [4]. The forecast uncertainty is
handled by insurance strategies in order to mitigate operational
risks [6,7].
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The state of the art shows a certain maturity already achieved in
the field of wind power forecasting. Many reviews were written to
summarize existing methods [8—12]. Almost all of them lead to two
obvious conclusions; 1. Wind is one of the most difficult meteoro-
logical data to forecast, 2. There is no ideal strategy; each method
has its own advantages and drawbacks and may be suitable in some
context and not suitable in other cases. The advantages and
drawbacks of each approach, the suitable context for application,
the interest of combining methods and the comparison between
common used models are depicted and detailed in Ref. [9].
Generally, forecasting methods are divided in two main groups;
physical approaches and statistical approaches. The physical
approach is related to physical considerations like temperature,
pressure, wind farm layout and relief. In general, it utilizes nu-
merical weather prediction (NWP) models which are descriptions
of the atmosphere behavior using mathematical equations. When
solved by a computer, they provide an accelerated simulation of the
future weather states. NWP models may be used either directly or
with post-processing to refine results [13—18]. However, this
approach is accused to be not suitable for short term and small
areas, apart from requiring extensive time simulation and resources
[9,15,19]. The statistical approach includes time series methods
used to predict the future evolution of wind according to historical
measured values. Among pure statistical methods, the well known
autoregressive moving average (ARMA) and autoregressive inte-
grated moving average (ARIMA) methods are often used [20,21].
Another statistical approach called the persistence model (PER)
assumes that the future wind value is equal to the current one. The
persistence is considered a reference for the very short term, and it
is used to evaluate the performance of other models [22]. Unlike
NWP, pure statistical methods are suitable for short term predic-
tion. Nonetheless, they are unable to learn and to change their
prediction strategy, since they establish a strict mathematical
relation between inputs and outputs [19]. Artificial intelligence
models, and specifically machine learning techniques, are created
to surpass this handicap. They are very powerful tools, with non-
linear modeling abilities, and they outperform generally the other
models. The artificial neural network (ANN) is the most commonly
used method in literature with different architectures: simple [23],
high order network trained by Kalman filter [24], combined with
wavelet transform [25,26], used with Gaussian distribution mixture
[27], tuned by genetic algorithms [28], used with spatial correlation
[29,30], and so on. The support vector machine (SVM) is another
machine learning technique used originally for classification and
then extended to regression problems with SVR (support vector
regression). The SVR is widely exploited for wind speed forecast
[31,32]. It may also be combined with other methods, such as
empirical mode decomposition (EMD) which is a technique to
decompose complex time series [33,34] or phase space recon-
struction and genetic algorithms [35]. The major problem
encountered with ANN and SVR is tuning, since they have many
parameters to adjust, and these parameters affect the model ac-
curacy. The hybridization is among improvements proposed to
enhance these models. The random forest (RF) is a non-parametric
learning machine, that does not require optimization or hybridi-
zation. It is an ensemble method that combines the prediction of
several weak predictors. However, it is rarely used for wind forecast
[36].

The classification of physical and statistical is not unique.
Methods may be also classified into four families; namely physical,
statistical, artificial intelligence and combined approaches [19].
Other classifications may be also found, considering spatial corre-
lation models as a group [8]. According to forecasting data, methods
may be indirect or direct. Indirect methods predict the wind speed
(and eventually direction) and use the power curve to determine

the power output. Direct methods predict power directly [4,19]. All
mentioned papers in the previous paragraph use indirect methods,
while several direct methods were indeed elaborated, based either
on physical models or statistical models [37—42]. Among the most
recent contributions in direct methods: the SVR enhanced by
Markov models [43], the SVR combined with morphology operators
[44], the NWP enhanced by ANN [45], the ANN tuned by particle
swarm optimization (PSO) [46], the adaptive neuro-fuzzy inference
system (ANFIS) with wavelet and PSO [47], the phase space
reconstruction with resource allocating network [48], the decision
trees [49] and the probabilistic wind power forecasts [50]. These
recent contributions reflect the researchers' trend towards use of
machine learning, numerical and heuristic optimization and
probabilistic forecast.

Although power output is related to wind speed, many other
atmospheric factors may have also their impact, such as wind di-
rection, pressure, temperature and humidity [51]. The wind direc-
tion for example is predicted by the least square method [52] as
well as by ARIMA [53] along with wind speed. The direction effect is
also highlighted in the case of wind/power conversion through
ANN [54]. The wind direction has not gained much attention
despite its potential importance. However, predicting wind direc-
tion is meaningful only for turbines with horizontal axis.

This paper proposes a random forest (RF) approach achieving
hour-ahead wind power forecast. The adopted method is direct.
The RF is chosen for all the advantages mentioned of machine
learning techniques, and was preferred over SVR and ANN since it
doesn't need any optimization. The adoption of a non-parametric
method such as RF resolves the major problem often encountered
with artificial intelligence methods, which is parameter tuning. An
extension to RF, called quantile regression forest, is developed in
order to construct confidence intervals for the prediction. The
probabilistic forecast, characterized by these prediction intervals,
can handle uncertainties induced by intermittent wind power. The
additive quantitative information provided by confidence intervals
is useful for decision-makings especially when accurate spot pre-
dictions are difficult [55]. This paper focuses also on showing the
importance of exogenous inputs of the predictor, such as wind
speed and direction, and their influence on the model accuracy. A
special attention is paid to the importance measures of inputs, and
the ability of random forest to resist to non-significant data. The
wind direction, the spatially averaged speed and the random forest
are the main contributions of this paper over previous wind fore-
cast researches.

The remainder of the paper is organized as follows: section 2
depicts the necessary mathematical tools, section 3 selects the
suitable meteorological variables, section 4 describes the model
construction, section 5 discusses the forecast results and section 6
concludes the paper.

2. Mathematical tools

The random forest is a method derived from artificial intelli-
gence, like artificial neural network. It is an ensemble method that
combines many decision trees using an algorithm called bagging.

2.1. Decision tree

A decision tree, also called Classification And Regression Tree
(CART), is a statistical model introduced by Breiman in 1984 [56]. It
depicts the different classes or values that an output may take in
terms of a set of input features. Generally speaking, a tree is a set of
nodes and branches organized in a hierarchy with no loops. A de-
cision tree is a tree whose nodes store a test function to be applied
to incoming data. Terminal nodes are called the tree leaves, and
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each leaf stores the final test result. The tree is binary if each node
has exactly two outgoing branches; called right child and left child.
The decision tree is robust, immune to irrelevant inputs and pro-
vides good interpretability.

The remainder of this section is restricted to regression prob-
lems, since the prediction is a kind of regression. Let X be an input
vector containing m features, Yan output scalar and S, a training set
containing n observations (X;, Y;).

Sn={(X1,Y1),...,(Xn,Yn)}, XeR™ YER (1)

During training, an algorithm drives the inputs split at each
node, so that the parameters of split functions become optimized to
fit with the S, set. The principle consists of splitting recursively the
input space X by searching optimal sub-partitions. More precisely,
the first step of CART algorithm has to split at best the root into two
different children according to:

{xf<d}u{xf>d} 2)

where je{1,...,m} and deR. In order to select the best split, the
couple (j, d) should minimize a cost function, which is generally the
child node variance. The variance of a node p is defined by:

var(p) = 3 (Y- V) 3)

i:Xiep

where Y), is the mean of the scalars Y; present in the node p. Then,
children nodes are also divided in the same way. The development
of the tree is stopped by a termination criterion. It is common to
stop the tree when a maximum number of levels is reached, or
when a node contains less than a predefined number of observa-
tions. At the end of this training process, a prediction function
h(X,Sn) is constructed over Sy.

The testing process determines an estimation Y of the output Y

corresponding to any new input vector X.

Y = h(X,Sn) (4)

Starting from the root, each node applies its own split function
to the new input X. According to the result of the binary test, data
are send to right or left child. This process continues until the data
reach a leaf (terminal node) [56].

2.2. Bagging and random forest

The random forest is an ensemble method that combines the
prediction of several decision trees [57]. The basic principle is called
bagging (bootstrap aggregation); where a sample of size n taken
from the training set S, is selected randomly and fitted to a
regression tree. This sample is called bootstrap, and it is chosen by
replacement, which means that the same observation (X;, Y;) may
appear several times.

A bootstrap sample is obtained by selecting randomly n obser-
vations with replacement from S,, where each observation has the
probability of 1/n to be selected. The independent identically
distributed random variables ®; represent this random selection.
The bagging algorithm selects several bootstrap samples

(59‘ yees Sn®"), applies the previous CART algorithm to these samples
in order to construct a collection of g prediction trees

(E(X, S,(?‘ ) E(X, S?")), and then aggregates the output of all these
trees.

In addition to bagging, the random forest selects also a pre-
defined number mtry among the m features for the split in each
node. The RF algorithm tries to find the best split among only the

mtry selected features. The selection at each node is uniform,
thereby each feature has the probability of 1/m to be selected. The
number mtry is the same for all prediction trees, and it is recom-
mended to be the square root or the one third of the features'
number m:

mtry = [v/m] (5)
Or:
iy = 3] ®

where [x] denotes the ceiling function of x. The remainder of the
algorithm is similar to CART, the best split couple (j, d) is obtained
by minimizing a cost function, and the procedure continues until
the full development of all trees.

The aggregation is performed by averaging the outputs of all
trees. Consequently, the estimation Y of the output matching a new
input vector X is as follows:

q

Zﬁ(x,s,?f) (7)

=1

Y =

Q=

The main advantage of bootstrap aggregation is immunity to
noise, since it generates non-correlated trees through different
training samples. A weak predictor (a standalone regression tree)
may be sensitive to noise, while the average of several decorrelated
decision trees is not. The selection of a random subset mtry of
features has the same aim of decorrelating trees.

Two main characteristics distinguish the random forest: the
out-of-bag error OOBE and the measure of variable importance VI.
The OOBE, also called generalization error, is a kind of built-in cross
validation. It is the average prediction error of first-seen observa-
tions; i.e. using only the trees that did not see these observations
while training. More explicitly, for each observation (X;, Y;) of Sp, an
estimation Y; of Y; is achieved by aggregating only the trees con-
structed over bootstrap samples not containing (X, Y;). The OOBE is
useful to estimate the generalization capacity of the model.

OOBE — % En: (Y,~ - ?,.)2 (8)

i=1

The variable importance measure is obtained by permuting a
feature and averaging the difference in OOBE before and after
permutation over all trees. Let's define for each bootstrap sample

Sn®’ its associated OBB,, i.e. the set of observations not included in

Sn®’. For a fixed j among the m features, the values of the jt variable
are permuted randomly over OBB; to get a disturbed sample called

@B,. The new OﬁEE, of the disturbed sample is then calculated.
These operations are repeated for every bootstrap sample. The
importance of the ji variable, called VI(X/), is defined by the dif-

ference between average errors of original OBB; and disturbed OﬁB,
[58].

VI(XJ') = % Zq: (OBEE, - OBBE,) 9)

=1
If permutations over the jt variable lead to increasing error, this
variable is relevant. The more the score VI(X/) increases, the more
the jth variable becomes important [57]. The number of trees q will
be denoted ntree for the remainder of the paper. The quantile
regression forests will not be detailed here for concision purpose.
However, a brief description of their operating principle will be
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given in section 5.3.

3. Selection of input meteorological factors

The aim of this section is to determine the appropriate wind
factors affecting the power output, by respect to the farm layout.
The chosen variables will be the exogenous inputs of the RF
predictor.

3.1. Wind farm characteristics

Over 4792 MW of installed power in Tunisia by 2014, only
307 MW are provided by renewable resources; 245 MW of wind
power and 62 MW of hydraulic energy. The main resources of
production are still gas and steam turbines, making the electricity
very dependent on the import of fossil fuels. Over the 245 MW of
wind power, 53.5 MW are provided by the farm of Sidi Daoud in the
north-east, which is the subject of this study. The wind power
provided 507 GWh in 2014, i.e. 3.6% of the total production of
14117 GWh. This contribution is still very low and unable to face the
increasing demand every year, but it is expected to rise in the near
future.

The offshore wind farm of Sidi Daoud contains 70 turbines
aligned from north-east to south-west, with a total capacity of
53.5 MW. It covers an area of 6 x 5 km?. The wind speed histogram
is given in Fig. 1, showing a distribution centered at 5 m/s. The wind
rose of Fig. 2 gives the wind dominant direction, which ranges from
west to west north-west. It is noticed that turbines are aligned
almost perpendicularly to this direction, as shown in Fig. 3. The
nominal power of each individual turbine is between 330 kW and
1320 kW.

3.2. Effects of wind on a single turbine

The power curve is a wind turbine characteristic given by the
manufacturer. Defined as a non-linear transfer function binding
wind speed and power output, it depends on the squared rotor
radius and cubed wind velocity. Three curve points are particular:
cut-in speed (beginning of production), rated speed (nominal po-
wer) and cut-off speed (stop production). However, this theoretical
curve may differ from real behavior, due to the other atmospheric
factors like wind direction or temperature. In fact, modeling the
wind power curve needs separate study [59,60]. Fig. 4(a) illustrates
this difference on a 330 kW wind turbine of Sidi Daoud wind farm.

Wind speed distribution, per 10 minutes in 2011
3000 = T T T

2500 m T

2000 i

15001 m H N

1000 N

Occurrence (per 10 minutes)

500 . N

10 15
Wind speed (m/s)

Fig. 1. Distribution of wind speed, sampled at 10 min in 2011.
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Fig. 2. Wind rose, directions sampled at 10 min in 2011.
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Wind % | Lines of
dominant turbines
direction
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Fig. 3. Layout of the wind farm.

The wind speed in the x-axis is locally measured by an anemometer
above the nacelle, at a height of 30 m. It can be seen that a wide
range of power values (270—385 kW) correspond to a single wind
speed of 15 m/s. The wind angular direction effect appears in
Fig. 4(b) showing maximum production points for NW since it is
the dominant direction. Despite equipped with yaw system ori-
enting the rotor towards the wind, the turbine does not produce
much power for NE and SW directions. This minimum production is
a consequence of the farm layout (depicted in the previous section
3.1). Fig. 4(c) shows an extrapolation surface that fits power to wind
speed and direction. For the rated speed of 15 m/s, several peaks
and valleys appear according to the angular value. Because of this
effect, the wind direction will be considered in the forecasting
model.

3.3. Effects of wind on a set of turbines

The wind farm contains 70 turbines, aligned from NE to SW,
perpendicularly to the wind dominant direction. Despite the small
farm area of 6 x 5 km?, the 70 measures of wind speed are not
equal, as illustrated in Fig. 5(a). The difference between them,
appearing only for some wind directions, leads to the question of
which speed should be utilized as input. To deal with this problem,
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(a) Produced power in terms of wind speed
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Fig. 4. Produced power of a 330 kW turbine in terms of: (a) wind speed, (b) wind direction, (c) speed and direction (2011).

itis relevant to pick the spatial average, defined by the average of all
the 70 measures. This choice is inspired by the spatial smoothing
effect, known to reduce forecast errors [51,61]. The spatial average
of wind speed has similar power curve shape to that of single tur-
bines. Fig. 5(b) shows a main curve reaching the nominal produc-
tion of 53.5 MW, along with small other curves with the same
shape. The small curves appear obviously when some turbines are
shut down, i.e. when the farm is not working at full capacity. If the
wind speed of the x-axis was recorded from one single location
(from the meteorological tower for example), the curve would be
much thicker; thus it would be harder to establish a production-
speed relationship. Fig. 6 shows the correlated curves of overall
power and wind spatial average. The linear correlation coefficient is
computed in order to assess the similarity between the two curves.
But since the relation between speed and power is not linear, only
the samples between 5 and 18 m/s will be considered. The [5—18]
m/s interval specifies almost the linear part of the power curve.
The linear correlation coefficient between power and spatial
average in 2011 is equal to 0.89 within the specified interval. The
same coefficient calculated between power and speed metered by
the meteorological tower is 0.69 within the same interval. Thus, the
speed spatial average is much more correlated to the global pro-
duction than the tower measures. As a consequence, the wind
spatial average will also be considered in the predictor.

The wind direction has also an impact on the overall power
output. As it can be seen through Fig. 5(c), the entire farm pro-
duction is maximum for some directions and minimum elsewhere.
This is caused by the wind farm layout characterized by large

spacing between turbines in the direction of the dominant wind.
This spacing weakens the turbulence behind the pales known as
the wake effect, causing maximum power for dominant direction
NW and opposite SE. In the other hand, the spacing in the
perpendicular direction is much smaller, which explains the weak
generation for SW and NE directions. Fig. 5(d) contains the surface
fitting power to speed spatial average and direction. Very similar to
Fig. 4(c), the main difference is that peaks and valleys are more
visible, which asserts the importance of wind direction in fore-
casting power generation. The correlation between power and di-
rection is not linear, thus the linear correlation coefficient is not
needed in this case. However, similarities will be detected in the
next section through correlation plots.

4. Forecast technique

In general, forecasting wind power means predicting the power
that the farm is expected to produce while operating under a
constant wind for a given time step [62]. During this time step,
which is equal to one hour in this study, the power output P(h + 1)
is assumed to be constant and equal to its average value P(h + 1).
The estimated hour-ahead power value will then be the output of
the random forest predictor, and denoted f’(h + 1), where h+1
stands for one hour in advance. The inputs of the predictor may be
endogenous or exogenous. The endogenous inputs are past power
values P, and they are mandatory for building time series predicting
models. The exogenous inputs are external factors that have an
influence on the future power, for instance wind spatially averaged
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(a) Different measures of wind speed through 5 turbines
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Fig. 5. Different measures of wind speed through 5 turbines (a), overall produced power of the wind farm in terms of: (b) wind speed, (c) wind direction, (d) speed and direction

(2011).

speed S and wind direction D. The term S is chosen to make the
difference with speed metered by the meteorological tower,
denoted S. The number of past samples is set to 6 for each feature; P,
S and D. This number is chosen assuming that only recent values of
inputs have an impact on future power in the short term. This
choice will be justified by correlation and importance measures. All
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Fig. 6. Overall produced power of the farm, and spatial average of wind speed, from 1
to 7 January 2011.

samples are measured at hour h (current hour) and 10 min spaced.
The term h:i stands for hour h and i minutes, where
i€]0,10,20,30,40,50]. By adopting the notation of section 2, the
model is depicted by these equations:

Power input:

P(h) = [P(h: 00),P(h:10),...,P(h : 50)] (10)
Speed input:

S(h) = |S(h: 00),S(h : 10),...,§(h:50)] (11)
Direction input:

D(h) = [D(h : 00),D(h : 10),...,D(h : 50)] (12)
Input vector:

_ T

X = [P(h),S(h), D(h)] (13)
Measured output:

Y=Ph+1) (14)
Predicted output:

Y —DPh+1) (15)

The P(h) component is mandatory, while S(h) and D(h) are
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optional, and added just to assess their influence on the model
accuracy. The total number of input m is then 6, 12 or 18, according
to the availability of S(h) and D(h) in the input vector X. There is no
rule to choose the number of past samples, but the correlation
functions can give an idea. Fig. 7 shows the autocorrelation plot of
the produced power during 7 days in January 2011, sampled at
10 min. The idea is to determine the similar past samples, i.e. the
lags with maximum correlation. As the curve is dropping fast, there
is no need to get more than 6 samples, that ensure a minimum
correlation equal to 0.93. In other words, there is a strong corre-
lation between the signal and its one-hour-lagged version. The blue
dashed line represents the maximum correlation minus 0.1, and it
intersects the curve in the tenth lag. This lag is considered the last
input acceptable for hour-ahead predicting. An extended two-years
autocorrelation function shows that there is no obvious seasonality
or cycles in the power signal. The same procedure is thereafter
followed to detect the similarities between power and speed spatial
average, through the cross correlation plot of Fig. 8 (only the pos-
itive part of the x-axis is given). In fact, this plot can be informative
if the power curve is linear. Thus, the nonlinear parts of the power
curve are simply neglected, since power is proportional to speed
most of the time (most speed measures are within [5—18] m/s). The
cross correlation plot ensures, by 6 past samples, a minimum cor-
relation of 0.83 between power and spatial average. The minimum
acceptable correlation is detected at lag 15, so there is no need to
take more than 15 past samples. Indeed, lags are considered
acceptable if they are between the green dashed line (maximum
correlation) and the blue one (maximum correlation minus 0.1).
The same procedure cannot be simply repeated with wind di-
rection, since there is no linear correlation between power and
direction, as it can be seen through Fig. 5(c). However, there is a
noticeable increase in power production between 230° (SW) and
360° (N). This part of the scatter plot can be considered linear just
to establish the cross correlation plot of Fig. 9. Although the
approximation is a bit coarse, it is generally enough to identify the
most influential past samples of direction. Fig. 9 shows the cross
correlation plot from March 28th (at 5 a.m.) to April 2nd, a period
within which the direction was between 230° and 360°. The sixth
lag ensures a correlation of 0.33, while the minimum acceptable
correlation is detected at lag 50. The 6 chosen past samples are

Autocorrelation function of wind power time series

Max correlation = 0.1

Sample autocorrelation

144 288 432 576 720 864 1008
Lag (10 minutes)

Fig. 7. Autocorrelation function of overall produced power of the farm through 7 days
in 2011.

Cross correlation function of power and speed average
1 T T T T T T

09k Max correlation

Sample cross correlation

) 144 288 432 576 720 864 1008
Lag (10 minutes)

Fig. 8. Cross correlation function between overall produced power and spatially
averaged wind speed through 7 days in 2011 (only the positive part of the x-axis is
shown).

Sample cross correlation function of power and direction
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0.9- : q

0.5- Lag 6 at 0.33 4

Lag 50 at 0.24 Max correlation b
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Sample cross correlation

288 830
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i
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Fig. 9. Cross correlation function between overall produced power and wind direction,
from 28 March (5 a.m.) to 2 April 2011 (only the positive part of the x-axis is shown).

within the limits, whether for P, S or D. The measure of importance,
depicted in section 2 and given in Table 1, helps also to determine a
suitable number of past values. The values of this table will be
explained in details in section 5.

The main drawback of the proposed approach is incapability of
forecasting wind gust, since wind is considered constant during the
whole time step, though sudden wind variations may be harmful
for turbines. In addition, accuracy decreases as the time step in-
creases, making the model valid only for the short term.

5. Case study
5.1. Data preprocessing
The data available in this study are gathered from Sidi Daoud

wind farm. They are in raw format, as they are metered by the
sensors. For each wind turbine, the produced power is measured in
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Table 1
Importance measure of the RF model inputs.

Importance (x 10'°) 1 January 2011 1 April 2011 1 July 2011 1 October 2011
P(h : 00) 1.7067 0.8217 1.1021 0.9179
P(h: 10) 3.5701 2.3557 2.4630 2.1143
P(h : 20) 7.6746 6.6662 5.7677 6.4738
P(h : 30) 19.5569 14.8396 14.2989 109115
P(h : 40) 37.4365 42.2595 38.2738 31.4237
P(h : 50) 70.1238 71.4938 58.4888 61.1984
S(h: 00) 0.7091 0.6118 0.5980 0.5429
S(h:10) 0.7878 0.6332 0.6077 1.0069
S(h: 20 2.0886 2.6560 1.2208 1.4390
S(h: 30) 5.0169 6.0880 2.6230 4.8386
S(h: 40) 13.9133 15.4094 17.6812 17.6111
S(h: 50) 43.9048 36.6618 36.9445 33.8879
D(h : 00) 0.3174 0.3561 0.3237 0.3245
D(h: 10) 0.3121 0.3357 0.3143 0.3196
D(h : 20) 0.3115 0.3161 0.2925 0.3007
D(h : 30) 0.3014 0.3215 0.3072 0.2957
D(h : 40) 0.3136 0.3245 0.3080 0.3154
D(h : 50) 0.3324 0.3474 0.3206 0.3228
kW, as well as the wind speed in m/s by an anemometer above the
nacelle. In addition, the meteorological tower provides wind speed 18 ‘131. — P
(in m/s), wind direction (between 0° and 359.9°) and air temper- NMAE = — L 1x100 (19)
ature (in °C). All data are given by one decimal place and by step of $ 1= Vinstalled
10 min, for the years 2010 and 2011.
The huge quantity of data contains necessarily some mistakes ~
caused generally by defective sensors. Any missing information are 13 ’P i—Pi
° i MAPE = _» " ——— x 100 (20)
directly detected by numerical calculus software, and they are S = P;
replaced by previous values. Redundant data are detected by the a
number of rows of the data table, which should contain 365 x 24 x R
6 = 52560 rows for each year. These faults are often scarce and do 18 P; — P,-’
not affect the prediction quality. Some defective sensors providea  MASE = 3 Z (HPP> (21)
constant value for a long period. When detected, this constant value i=1 szfzz | J— A |

is considered false and its corresponding period is avoided. Addi-

tional information may also be calculated, such as the overall pro- cov (P 13)
duced power by summing the output of all turbines, the spatially cC = corr<P, ﬁ) _ ’ (22)
averaged wind speed by averaging all the speed measures, and the apo5

hourly averaged power.
where s stands for the total number of errors over the testing
period, Pjsaeq Means the total installed power of the wind farm
(53.5 MW in the case of this paper), cov denotes the covariance and
op stands for the standard deviation of P.

These criteria cover the most common error measurements

5.2. Evaluation criteria

The evaluation criteria of forecast methods are procedures to
quantify the prediction error. They are used to estimate through

different approaches the distance between original output P and
estimated output P (The notations P and P are used here instead of
P(h+1) and P(h + 1) to lighten the equations). The chosen evalu-
ation criteria in this paper are the following: the mean absolute
error (MAE), the root mean squared error (RMSE), the maximum
absolute error (MXE), the normalized mean absolute error (NMAE),
the mean absolute percentage error (MAPE), the mean absolute
scaled error (MASE) and the correlation coefficient (CC).

(16)

MAE = 1 i’ﬁi iy
5 i3

used by researchers. The MAE is the most natural criterion, since it
is simply the average of all found errors, through their absolute
values to avoid error offset. The RMSE does the same thing, except
avoiding the error sign by squaring instead of absolute value. The
RMSE is similar to the RMS of alternating electric current, and it is
generally greater than MAE. These two criteria assess the prediction
accuracy by raw and not normalized quantification, and this may be
irrelevant. For instance, an error of 2 MW has not the same impact
on a farm of 1000 MW of installed capacity as it may has on a
50 MW farm. To overcome this problem, it is possible to use the
MAPE. The MAPE divides each error by the real power value before
averaging, in order to get a percentage. However, this criterion has
also its drawbacks, especially when the real value tends towards
zero. The MAPE will then tend towards infinity, which is not rele-
vant, and this is particularly the case of intermittent time series
such as wind. The MASE is proposed in this context of intermit-
tence. The MASE, with no unit, reflects better accuracy whenever it
gets closer to zero. It does never give infinite values except in the
case where all real values are equal, which is not significant. Finally,
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Initial training period
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Testing period
Day 1today b
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1 a | 1 b Predicting day 1
2 a+1| 2 b Predicting day 2
b-a b-1| b Predicting day b
Training days Testing days

Fig. 10. The online learning principle.

the NMAE is another proposed criterion, which divides each error
by the overall installed capacity instead of the real power value. It
avoids then the division by values close to zero, and differs from the
MASE since it represents a percentage. But since it is related to the
installed power, the NMAE remains dependent on the wind farm
capacity. Thus, it has the drawback of getting smaller in larger
farms.

The remaining criteria are a bit special. The MXE determines the
highest error through its absolute value over all the test period. It is
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Nominal power

50

N
o

Power (MW)
w
o

20

72 96
Hours

60 Forecast from 21 to 27 July 2011

Nominal power

0 24 48 72 96 120 144 168
Hours

especially useful to detect error peaks. The CC is simply the linear
correlation coefficient between measured and predicted time se-
ries, and it is the only criterion that should be close to one to reflect
better accuracy.

5.3. Results and interpretations

To test the proposed model on the available data, hour-ahead
wind power forecast is performed throughout the year 2011. The
RF predictor uses the set of equations (10)—(15) for modeling, and
equation (7) for predicting. The number of trees ntree is set to
default 500, and the mtry parameter follows equation (6). The
learning process is online, with 1 year of training and 1 year for
testing. For example, to predict the 24 h of 1st January 2011, 1st
January to 31st December 2010 are used as training period. The
training set S, contains then 8759 observations:

n=365x24—1=8759 (23)

The minus 1 means that the first hour of the training period can
not be used as observation, since its corresponding inputs are
outside S;. The testing set contains 24 input vectors which will be
applied to the RF predictor. The online learning means repeating
the training process for each new day of the testing period. It is
introduced to capture the seasonal components. As shown in
Fig. 10, the training period is sliding in order to learn the new
weather patterns. This implies 24 new observations appended
everyday to the training set S;;, while the oldest 24 observations are
removed. Hence, the training period contains always one year just
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Fig. 11. Hour-ahead forecast results over four testing periods.



538 A. Lahouar, J. Ben Hadj Slama / Renewable Energy 109 (2017) 529—541

Table 2

Forecast evaluation criteria of all methods throughout the year 2011.
Method PER RF ANN
Criterion 1 input 6 inputs 12 inputs 18 inputs 6 inputs 12 inputs 18 inputs
MAE 2.2928 1.8823 1.8877 1.8900 1.9795 2.0926 2.2607
RMSE 3.7171 3.0354 3.0131 2.9989 3.2345 3.3828 3.4997
MXE 32.1926 30.1021 28.0905 28.2117 32.1493 45.1402 414134
NMAE 4.2459 3.4858 3.4957 3.5000 3.6658 3.8751 4.1864
MAPE 26.2563 14.3833 15.4588 16.5648 8.1082 14.4940 51.7620
MASE 1.0000 0.8210 0.8233 0.8243 0.8634 0.9127 0.9860
cc 0.9583 0.9718 0.9723 0.9726 0.9680 0.9653 0.9628

before the testing day. Consequently, in order to predict 2nd
January 2011, 2nd January 2010 to 1st January 2011 are used as
training period. The procedure continues until 31st December 2011.
Table 1 shows the importance of each input in four different days of
the year. The importance is measured following equation (9). The
most important input is P, especially its last components P(h : 40)
and P(h : 50), then the last components of S. The direction inputs
are not very important regardless of their position.

The hour-ahead forecast results appear in Fig. 11, which shows
the hourly predicted signal through four testing weeks in different
seasons. The predicted signal is the overall produced power of the
farm, while taking all the 18 possible inputs, P, S and D. The chaotic
nature of wind is obvious through the curves. The forecast is ac-
curate in most cases, except sharp and sudden variations of the
measured signal.

The results of Fig. 11 are not necessarily optimal, since some
inputs may be disturbing. For instance, the direction inputs have
weak correlation with the output and low importance measure, so
they may be irrelevant. However, they are kept to observe their
effect. Table 2 tries to assess the contribution of each input, by
computing the seven proposed evaluation criteria while operating
with 6, 12 and 18 inputs, respectively. The 6 inputs are P(h) (all
endogenous), the 12 inputs are [P(h),S(h)] (6 endogenous and 6
exogenous) and the 18 inputs are [P(h),S(h), D(h)] (6 endogenous
and 12 exogenous). As for evaluation criteria, MAE, RMSE and MXE
are in MW, NMAE and MAPE are in percent, and MASE and CC are
with no unit. Table 2 shows the results for the whole year 2011. It
compares the proposed RF model to classical neural network (ANN)
and persistence (PER). The ANN is a generic feedforward network
with one hidden layer of 30 neurons. It has the same inputs of RF.
The persistence has one input which is the current average power
P(h). ANN and RF are better than PER in terms of accuracy in most
cases. With only 6 inputs, ANN and RF have similar predictions.
With 12 inputs, the RF remains almost the same; most criteria have
changed a little bit. However, the ANN prediction quality decreases
considerably. With 18 inputs, the quality of prediction dropped
more in the ANN case, while the RF prediction is almost not
affected. This reflects the immunity of RF to irrelevant inputs, which
makes all its strength. Hence, the user of the RF predictor does
neither need to remove non-significant inputs, nor need to search
optimal configurations for its machine. These are two major ad-
vantages of RF over ANN. By respect to most evaluation criteria, the
RF predictor achieved a decrease of 17% compared to persistence. To
conclude, the RF profits from spatially averaged speed S and di-
rection D once appended to the input vector. And even when they
have no contribution, they do not degrade significantly the pre-
diction accuracy.

It is quite difficult to compare results with data from other
farms, since forecast models are generally site-specific and related
to the prediction horizon [9]. However, it is known that the NMAE is
generally high, ranging from 15% to 20% for day-ahead predictions,
contrary to load forecast whose errors are typically in the range of

1%—3% [43]. Naturally, hour-ahead prediction errors will be lower,
in the range of 2%—4%. The contribution of this paper is not to get
only the minimum error, but also to assess the effect of new
exogenous features like wind speed or direction, and to avoid
harmful effects of any irrelevant input.

In addition to point forecast, it is possible to predict with con-
fidence intervals. The quantile regression forest is used for this
purpose. The concept is quite simple; instead of recording the
average response of each leaf in the tree, it stores all responses in
the leaf. The prediction does not then return only the mean of re-
sponses, but the full distribution of response values for each input.
Through this distribution, it is possible to create prediction in-
tervals by using the appropriate percentiles [63]. Quantile regres-
sion forests are tested on the whole year 2011, using the same
online learning procedure. Fig. 12 gives the obtained prediction
intervals from 4th to 7th February 2011. Results are pretty satis-
fying; the measured curve does not get over boundaries. The largest
confidence interval contains almost all samples. Furthermore, in
order to quantitatively assess the forecast quality, Table 3 gives the
following criteria, for the whole year 2011: the number of measured
samples inside each prediction interval, their percentages (by
dividing by the overall number of samples; 365x 24 = 8760 sam-
ples), the average thickness of each interval, and the relative
average thickness (by dividing by the wind farm capacity;
53.5 MW). As it can be seen, only 7.64% of measured samples are
outside prediction intervals. Also, the relative average thickness of
the largest interval does not exceed 15.90%. Naturally, prediction
intervals should be as narrow as possible.

Forecast from 4 to 7 February 2011
60 T T T

90% interval
80% interval
70% interval
60% interval
50% interval
I 40% interval
[ 30% interval
40 [ 20% interval
I 10% interval
— Point forecast
— Measured

50

0 i i i
0 24 48 72 96

Hours

Fig. 12. Prediction intervals for hour-ahead forecast.
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Table 3
Quantitative assessment of probabilistic forecast.

Interval Number of samples Percentage of samples Average thickness (kW) Relative thickness
10% interval 956 10,91% 545 1,01%
20% interval 1966 22,44% 1100 2,05%
30% interval 2915 33,27% 1680 3,14%
40% interval 3880 44,29% 2316 432%
50% interval 4760 54,33% 3012 5,62%
60% interval 5643 64,41% 3819 7,13%
70% interval 6475 7391% 4810 8,99%
80% interval 7296 83,28% 6170 11,53%
90% interval 8090 92,35% 8509 15,90%
Out of bounds 670 7,64%
P(h:00) R R N N
oo D(h+1)= [D(h+ 1:00),D(h+1:10),....D(h+1: 50)] (26)
p(h) { ——
p( h:'SEJ') The modified model is considered hybrid, since it includes direct
- and indirect methods. The results of hybrid forecast are given in
3(h+1100L Table 4, for the whole year 2011. The effectiveness of exogenous in-
X Dedicated | §(h+1: 10)' Random B(ne1) puts in this case is obvious, the NVIAE for example dropped from 3.48
S(h+1) Speed —> Forest - to 1.76 after adding S(h+1) and to 1.72 after adding D(h+1).
Prediclor | & (41-50) Predictor However, the ANN did not profit properly from these additional in-
5 (h+1:OTT puts. The advaptage of RF here is .the e}bility to .gather ?nformat?on
> from any extra inputs without getting disturbed if these information
X Dedicated | D(h+1:10) are irrelevant. Furthermore, the hybrid model is a way to exploit the
D(h+1) Direction e other sophisticated forecasting methods, such as optimized ANN/
Predictor | H(h+1 :51 SVM, in order to benefit from their advantages in addition to RE.

Fig. 13. Hybrid hour-ahead wind power forecasting model.

Table 2 does not assert that speed and direction have an effec-
tive contribution in the forecast accuracy, since the decrease in
most criteria is not very interesting. The RMSE for example dropped
from 3.03 to 2.99 after appending speed and direction to the inputs.
Hence, a second test is performed by adding the future values of
spatial average speed S(h+ 1) and direction ﬁ(h + 1) instead of
current values. The future values are predicted by dedicated fore-
casters that may be physical or statistical, as shown in Fig. 13. Here,
these values are exact assuming perfect forecasters, just to assess
the real contribution of exogenous inputs. The model is then
modified as follows:

X = [P(h),(h+ 1), D(h+ 1)] (24)
where:

Sth+1)= [f(hﬂ :00),S(h+1:10),...,S(h+1: 50)]  (25)

6. Conclusion

Hour-ahead wind power forecast is possible using machine
learning techniques such as ANN and RF, that outperform classic
statistical methods and avoid the use of NWP complex models. The
RF is an ensemble method for classification and regression prob-
lems, and it is used in this paper to predict wind power. It is rele-
vant to select the suitable meteorological factors to include in the
predictor, by analyzing their effects and by measures of correlation
and importance. The spatial average of the wind speed and the
wind direction in addition to past power values are chosen as in-
puts. After preprocessing data and selecting evaluation criteria, four
periods of test across four seasons are chosen to assess the pro-
posed model. Results show accurate forecast in most cases, when
spatially averaged speed and direction are added to the inputs.
However, adding these features to classical methods such as neural
networks degrades enormously the results. The main contribution
of this study is to demonstrate the ability of random forests to
benefit from exogenous inputs that may carry additional informa-
tion, without getting disturbed when these inputs are irrelevant.
The user of the model can get the best from the random forest with
no optimization process, which is a major advantage over other
learning machines.

Table 4

Forecast results of the hybrid model.
Method PER RF ANN
Criterion 1 input 6 inputs 12 inputs 18 inputs 6 inputs 12 inputs 18 inputs
MAE 2.2928 1.8823 0.9554 0.9325 1.9795 1.1983 1.4587
RMSE 3.7171 3.0354 1.7637 1.7615 3.2345 2.0686 2.5792
MXE 32.1926 30.1021 19.7152 19.5989 32.1493 22.8434 38.9105
NMAE 4.2459 3.4858 1.7693 1.7269 3.6658 2.2190 2.7012
MAPE 26.2563 14.3833 10.0375 10.2980 8.1082 23.4266 38.0565
MASE 1.0000 0.8210 0.4167 0.4067 0.8634 0.5226 0.6362
cc 0.9583 0.9718 0.9911 0.9911 0.9680 0.9877 0.9807
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