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Abstract—With the great recent moves towards green energy
exploitation worldwide, the solar photovoltaic (PV) power has
gained much attention. Thanks to PV panels’ cost drop and
recent improvements in energy conversion systems, the PV
installations are getting more and more integrated into power
plants. Because of high correlation with weather conditions,
accurate short-term PV output forecast is highly recommended.
An accurate prediction is needed to assess the effective con-
tribution of solar energy in the grid, and to overcome the
problems of intermittence. This paper proposes a day-ahead
prediction method of PV output, which estimates the power
generated by solar panels with and without prior knowledge of
solar irradiance. The proposed model is the random forest using
bagging algorithm, characterized by built-in cross validation and
immunity to irrelevant inputs. A special attention is paid to the
choice of most influential weather conditions on future power.
The proposed approach is validated through tests on real data
from PV sites in Australia.

Index Terms—Photovoltaic power forecast, random forest,
importance measure, solar irradiance, feature selection.

I. INTRODUCTION

The PV energy becomes the center of interest in many

countries, especially in deserts that receive huge amounts

of solar irradiance. It is among best alternatives to conven-

tional thermal and nuclear generation. Being environmentally

friendly and having low production costs, it is now getting

more and more integrated into power plants. The global

installed capacity all over the world reached 227 GW in 2016.

China is the world leader with 15.3 GW installed, followed by

United States, Europe and India. The PV technology becomes

easier to manipulate thanks to the decreasing costs of solar

panels and recent advances in power converters and batteries.

Nowadays, the smart grid concept includes necessarily renew-

able energy resources with different levels of penetration. The

novel technologies ensure better management and exploitation

of these intermittent resources, and provide sophisticated tools

to deal with any problems that may occur.

However, the PV energy has to overcome various problems.

The intermittence of power output is among most important

issues, since it is highly dependent on weather conditions.

Forecasting the power that may be provided by the solar panel

is then mandatory for dispatch. This forecast is performed

for a period of time in the future called forecast horizon,

through one or various time steps. It is possible to predict

power, energy or solar irradiance. According to the forecast

horizon, the forecast ranges from very-short to long term. In

general, researchers focus on short-term, precisely hour-ahead

and day-ahead forecasts. Indeed, they are extremely important

for planning, feasibility and scheduling. Long-term predictions

are also useful, especially for maintenance. Some possible

definitions of forecast horizons as well as forecast interests

for each horizon can be easily found in literature [1]. The

accurate forecast becomes more critical with high penetration

levels of solar installation in the grid. In fact, the effect of

neighboring solar plants on power forecast is quantified [2], as

well as the economic benefits of accurate PV prediction [3].

In addition to traditional forecast, recent research advances

are moving towards probabilistic forecast, which provides

confidence intervals instead of single points. The probabilistic

forecast handles the uncertainty more efficiently, and offers a

margin within which the dispatcher can act in case of major

error.

One of the most important steps to achieve an accurate

forecast is the feature selection, which means choosing the

appropriate factors that drive the predicted output. In the case

of PV forecast, the solar irradiance is obviously the most

important feature. However, several other weather conditions

have also their impact, such as air temperature, humidity,

wind speed, and wind direction. Various approaches are used

to determine the appropriate weather factors, generally by

regression and correlation analyses. Autocorrelation and cross

correlation functions are also tools to select the suitable

features across time. In addition to feature selection, some

intrinsic characteristics are also responsible for reducing the

forecast error, such as the area of the solar farm. In fact,

enlarging the panels’ surface makes the overall production

smoother and minimizes the disturbing phenomena such as

cloud shading.

Forecast methods may be direct or indirect. In case of

indirect methods, the solar irradiance is predicted, and then

converted into power using the characteristics of panels. In

direct methods, power is predicted directly. Indirect methods

may be physical or statistical. Physical approaches rely on

meteorological equations that are solved by calculators in

order to estimate future weather states. The numerical weather



prediction (NWP) is among the well-known physical models.

Statistical approaches make use of time series, regression and

artificial intelligence.

Several reviews summarize the commonly used methods

by researchers [4]. Time series predictors are the simplest

models, such as nonlinear autoregressive model with exoge-

nous inputs [5], or autoregressive integrated moving average

[6]. The artificial neural network (ANN) is one of the most

elaborated approaches for PV forecast. It may be utilized as

standalone forecaster [7] or combined with particle swarm

optimization [8], Markov model [9], wavelet transform [10],

or even enhanced by confidence intervals [11]. The support

vector machine (SVM) is likewise a well-developed method.

It may be combined with ANN [12] or wavelet decomposition

[13]. The random forest (RF) is also used, where it may be

combined with confidence intervals [14]. Probabilistic forecast

has gained much attention on his part [15], with possible com-

bination with Markov chain [16] or elaboration of stochastic

processes [17]. Physical methods are also developed, such

as tracking clouds’ motion [18], NWP optimization [19],

and electric circuit modeling [20]. Hybridizing physical and

artificial intelligence models is also possible [21] in addition

to comparison between them [22].

This paper proposes a random forest (RF) predictor for day-

ahead PV output forecast, hour-by-hour. The RF is chosen

since it is immune to irrelevant inputs and has good general-

ization capacity. The most important aspect is the RF ability to

measure the importance of its inputs. The importance measure

is then exploited in the feature selection process. In addition,

correlation and profile analysis are elaborated in order to

select the suitable features. The model has 15 variants for

15 prediction hours in the day, between 5 am and 7 pm.

Tests are carried out on real data from the Australian PV

sites, with and without prior knowledge of solar irradiance.

The remainder of the paper is organized as follows: section

II gives necessary mathematical tools, section III depicts the

design of forecasters and the feature selection process, section

IV analyzes the obtained results, and section V concludes the

paper.

II. MATHEMATICAL DEVELOPMENT

The random forest is an ensemble method that aggregates

the output of several uncorrelated decision trees. The decision

tree will then presented first.

A. Decision tree

A decision tree, or classification and regression tree, is a

statistical model introduced in 1984. It depicts the different

classes or values that an output may take in terms of a set

of input features. A tree in general is an organized set of

branches and nodes with no loops. The nodes of a decision

tree store a test function that should be applied to incoming

data. Terminal nodes are called leaves of the tree. Each leaf

stores the final test result. The tree is binary if each internal

node has only two outgoing branches, called right child and

left child. The decision tree may be used for classification or

for regression. In this paper, only the regression variant will

be depicted, since forecast is a kind of regression. Let X be

the input vector containing m features, Y the output scalar

and Sn a training set containing n observations (Xi, Yi):

Sn = {(X1, Y1), ..., (Xn, Yn)}, X ∈ R
m, Y ∈ R (1)

During training, an algorithm drives the inputs’ split at each

node, in a way to optimize the split function parameters so

they fit with Sn. The concept is to split recursively the input

space X by searching the optimal sub-partitions according to:

{Xj < d} ∪ {Xj > d} (2)

Where j ∈ {1, ...,m} and d ∈ R. In order to determine the

best split, the couple (j, d) has to minimize a cost function,

which is most of the time the variance of children nodes. The

variance VAR of a child node p is defined by:

VAR(p) =
∑

i:Xi∈p

(Yi − Ȳp)
2 (3)

Where Ȳp is the average of observations Yi present at node

p. Then, children nodes are also split according to the same

procedure. The tree development is stopped by a termination

criterion. Generally, the tree is stopped when a maximum

number of levels is reached, or when a node contains less

than a minimum number of observations. At the end of the

training process, a prediction function ĥ(X,Sn) is built over

Sn.

The test process consists in determining an estimation Ŷ of

the output Y that matches a new input X . A new input means

not contained in Sn:

Ŷ = ĥ(X,Sn) (4)

Starting from root, each node applies its own split function

to X . According to the result of the binary test, data are sent

either to right child or to left child. This procedure continues

until X reaches a leaf (a terminal node).

B. Random forest

The random forest (RF) is a combination of several weak

predictors. The base principle is called bagging (or bootstrap

aggregation); where a sample of size n from the training

set Sn is selected randomly and fitted to a regression tree.

This sample, called bootstrap, is chosen by replacement.

Replacement means that the same observations (Xi, Yi) may

appear several times.

A bootstrap sample is built by selecting randomly n obser-

vations with replacement from Sn, where each observation has

a probability of 1/n to be selected. The independent identically

distributed random variables Θl represent this random selec-

tion. The bagging algorithm selects various bootstrap samples

(SΘ1

n , . . . , S
Θq

n ), applies the previous regression tree algorithm

to these samples in order to get a collection of q prediction

trees (ĥ(X,SΘ1

n ), . . . , ĥ(X,S
Θq

n )), and finally aggregates the

outputs of all these predictors.

In addition to bagging, the random forest chooses a prede-

fined number mtry of features among the m available features



for the split at each node. The RF algorithm tries to find

the best split according the mtry selected features only. The

selection is uniform, thus each feature has a probability of 1/m
to be chosen. The number mtry is the same for all prediction

trees, and it is recommend to be the square root or the one

third of m:

mtry = ⌊
√
m⌋ (5)

Or:

mtry = ⌈m/3⌉ (6)

Were ⌊x⌋ and ⌈x⌉ stand for floor and ceiling functions of

x, respectively. The remainder of the algorithm is similar to

that of regression trees: the best couple for split (j, d) is

obtained by minimizing a cost function, and the procedure

continues until full development of all trees. The aggregation

is performed by averaging the outputs of these trees. Then, the

estimation Ŷ of output matching any new input X is computed

by:

Ŷ =
1

q

q
∑

l=1

ĥ(X,SΘl
n ) (7)

The major advantage of bootstrap aggregation is immunity to

noise, since it combines the prediction of several uncorrelated

trees. In addition, two other characteristics distinguish the RF,

which are the out-of-bag error, and the measure of importance.

These two special functions are not detailed here in order to

lighten the paper. The number of trees q will be denoted ntree

in the following sections.

III. DESIGN OF THE PREDICTOR

A. Profile analysis

The University of Queensland in Australia has several PV

sites with a total installed capacity of 5796 kW. The data used

in this paper are relative to one of these sites, where power,

cumulative energy and weather conditions are recorded every

minute.
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Fig. 1. Distribution of daily cumulative energy over 2013
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Fig. 2. Evolution of daily cumulative energy throughout the year 2013

Fig. 1 shows the daily distribution of cumulative energy over

2013. The cumulative energy is the overall produced energy

by solar panels at the end of the day. As it can be seen,

most occurrences are between 0.5 and 3 MWh, while only few

days have no production at all. To have such a distribution is

beneficial for the predictor, since it makes the learning process

more efficient. Fig. 2 tracks the evolution of cumulative energy

throughout the year. The seasonal effect is obvious, where

winter months (June and July) have the minimum production.

Dealing with seasonal effect is relatively easy. It is enough

either to add a season index to the predictor’s inputs, or to

perform an online training.
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Fig. 3. Hourly evolution of cumulative energy and solar irradiance from 11
to 17 January 2013

Fig. 3 shows the hourly evolution of cumulative energy

across 7 days in January. Each day consists of 15 hours only,

from 5 am to 7 pm, when the sunlight is available. The energy

is correlated with solar irradiance to some extent. However,
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Fig. 4. Hourly evolution of power and solar irradiance from 11 to 17 January
2013

correlation with irradiance is much more visible in case of

instantaneous power, as shown in Fig. 4. The two curves

overlap most of the time. Indeed, the solar irradiance is the

most important factor that drives the power. The curves’ shape

is sometimes smooth, and sometimes rough and spiky. The

roughness is a consequence of cloudy sky, and it hardens the

forecast process.

B. Feature selection

The feature selection is an important step. It is the art

of choosing the most appropriate factors driving the power

output. Statistical methods in general make use of past values

to predict future values. For this purpose, the autocorrelation

function is plotted in Fig. 5. The autocorrelation determines

similar past samples to the current power value. Obviously,

lags of 15 hours have the maximum magnitude, hence the

maximum similarity. There is then a strong daily seasonality,

since each day contains 15 hours. It can be concluded that

power at hour h of a given day is highly correlated with power

at hour h of previous days.

TABLE I
IMPORTANCE MEASURES OF THE SIX CHOSEN INPUTS

Importance at noon (×1010) 7 October 7 January 7 April 7 July

Month 7.6964 1.2006 4.7092 1.9354

Temperature 9.2263 16.4887 26.2148 4.5168

Humidity 20.3370 22.4457 20.6520 9.0860

Solar irradiance 32.3992 48.0994 38.0906 28.7998

Wind speed 3.6926 5.1924 11.0516 4.0792

Wind direction 5.1447 7.1231 11.8031 5.6302

The measure of importance is another way to determine the

suitable features. The importance measures of six variables

are then calculated. These variables are: month index Mo,

temperature T , humidity Hu , solar irradiance Ir , wind speed
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Fig. 5. Autocorrelation plot of hourly power across 7 days in January 2013

Ws and wind direction Wd . The measures, which appear in

Table I, are taken on four different days at noon, after 90 days

of training. The considered output is obviously the produced

power P at noon, expressed in watts. The solar irradiance has

unsurprisingly the maximum importance measure. However,

the second most important variable is humidity, and not

temperature as expected. Indeed, some PV sites have their

special intrinsic characteristics that may differ from usual sites.

Also, the wind direction is a little bit more important than wind

speed.

C. Model construction

Because of high daily seasonality, it is judicious to predict

each hour of the day apart through a dedicated forecaster.

Hence, 15 variants of the RF predictor are called to forecast

the 15 hours of the day. Each variant has the six previously

selected inputs, and one output which is the predicted power

at that hour. In other words, the model is depicted by these

equations for each hour h of the day:

X(h) = [Mo(h), T (h),Hu(h), Ir(h),Ws(h),Wd(h)]T (8)

Ŷ (h) = P̂ (h) (9)

Where Ŷ (h) is computed according to equation (7), and h
is the hour index (h = 1, . . ., 15). The quantity P̂ (h) is the

predicted power at hour h. The constructed model assumes

that all input variables are known in advance. Building such

a model is useful to assess the RF power forecast ability,

assuming perfect weather predictions.

The RF machine is set to default parameters, ntree = 500
and mtry follows equation (6). Four tests are performed over

four weeks in October, January, April and July. The training

period for each week is set to 90 days. The learning process

is online, which means new training for each new day. The 15

forecasters predict the first day of the testing week. Then the

real power values of the first day are appended to the training

period and the farthest values from it are removed, so that the
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Fig. 6. Predicted and actual power curves throughout four test weeks

second day can be predicted. This procedure continues until

the last day of the test period. This looks like a sliding train

period, used in order to teach RF predictors the new trends

of power pattern. The online learning helps to overcome slow

seasonal effects, such as transit from winter to summer.

IV. CASE STUDY

A. Forecast with prior knowledge of solar irradiance

This type of forecast assumes that future weather conditions,

namely temperature, humidity, irradiance, wind speed and

wind direction are known in advance. They are determined

for each hour of the day, either by physical/NWP models or

by dedicated statistical models. These future values should

be available at predictors’ inputs before forecasting. In this

paper, exact historical values are utilized. It is true this looks

like conversion rather than a proper forecast, but it is useful

to assess the efficiency of the predicting machine. The four

tests are then applied using the online learning depicted in

the previous section. The weeks of test range from the 1st to

the 7th day of October 2013, January, April and July 2014,

respectively. The predicted power curves are given in Fig. 6.

In October, the forecast is almost perfect. Fortunately, there

was no major shading. In January, some little errors occurred.

The fifth day is a bit special; the produced power was lesser

than usual. April has the worse results; the curve is pretty

spiky. The curve’s roughness is expected in autumn, since it

is the season with maximum cloud movements. The results

in July are somehow acceptable, even if some difficulties are

expected.

The qualitative evaluation through curves is generally not

enough. Quantitative assessment through error metrics is also

required. The evaluation metrics are criteria that measure the

distance between actual and predicted quantities. This paper

uses, among well-known error metrics, the mean absolute error

(MAE), the root mean squared error (RMSE) and the mean

absolute percentage error (MAPE), defined by:

MAE =
1

s

s
∑

h=1

|P̂h − Ph| (10)



RMSE =

√

√

√

√

1

s

s
∑

h=1

(P̂h − Ph)2 (11)

MAPE = 100× 1

s

s
∑

h=1

|P̂h − Ph|
Ps

(12)

Where h is the hour index, s is the total number of hours in

the test period, P̂h and Ph are predicted and actual power at

hour h, respectively, and Ps is the average power over the test

period:

Ps =
1

s

s
∑

h=1

Ph (13)

The MAE is the most natural criterion; it is simply the average

of all errors, through absolute value to avoid offset. The RMSE

does the same thing, except avoiding offset by squaring instead

of absolute value. The MAE and RMSE are raw quantification,

i.e. they are expressed in terms of the original signal unit,

which is kW. This is not very useful. For instance, the same

error of 50 kW has not the same impact on a little PV site as it

may have on large sites. The MAPE is the consequence of the

need for relative error metric. As it is expressed in percentage,

it is more significant. However, it is also affected by the PV

site capacity.

TABLE II
FORECAST RESULTS IN TERMS OF PROPOSED EVALUATION CRITERIA

Period 1 to 7 October 1 to 7 January 1 to 7 April 1 to 7 July

Max P (kW) 369.9900 408.6350 406.9250 253.0700

MAE (kW) 16.6341 30.1435 35.5628 15.1879

RMSE (kW) 24.6179 44.3428 61.7241 26.5178

MAPE (%) 10.2558 19.1602 28.9766 17.4471

Table II shows the obtained results for all test weeks through

the three proposed criteria, in addition to the maximum

recorded power measure P . The RMSE is a bit higher than

MAE in most cases. In accordance with qualitative evaluation,

the least accurate results are those achieved in April. The

MAPE is affected by the average measured power Ps, so

it has higher values for lower Ps. For this reason, the MAPE

has lower values in large sites, where Ps is pretty high. This

is the major inconvenient of this type of criteria.

B. Forecast without prior knowledge of solar irradiance

In this section, the future solar irradiance will be removed

from inputs. Indeed, future weather conditions, especially

irradiance, are not known in advance. The role of the predictor

is to estimate the future power without prior knowledge

of weather conditions. However, only future humidity and

temperature will be kept, since they are relatively easy to

predict. The model will then be modified to take only three

inputs; future temperature, future humidity, and current power.

The output should be the future power.

Two tests are then carried out in order to assess the

efficiency of the new model. Naturally, a decrease of accuracy

is expected, since the most influential input is absent. The

first weeks of January and August 2014 are chosen for test.

Predicted and actual curves have similar general trends and

magnitudes, but they differ in sharp and brief variations. The

error criteria are also computed, including MAE, RMSE and

MAPE. In addition, persistence and neural network predictions

are also performed in order to compare results. The persistence

(PER) assumes simply that future power (of day d) is equal to

current power (of day d − 1). The artificial neural network

(ANN) is a simple feedforward network with one hidden

layer of ten neurons. Results are given by Table III, which

proves the superiority of RF in both cases. It is true that

ANN could provide much better results once optimized, but

the aim here is to prove the advantage of nonparametric

methods such as RF. Nonparametric methods do not need

optimization or parameters’ tuning. It is important to notice

also that persistence could provide very accurate results in

case of consecutive similar days. Consecutive similar days is

a phenomenon that occurs often in spring and summer, when

the solar irradiance remains the same for several days, along

with complete absence of clouds.

TABLE III
RESULTS OF FORECAST WITHOUT PRIOR KNOWLEDGE OF SOLAR

IRRADIANCE

Period 1 to 7 January 2014 1 to 7 August 2014

Method PER ANN RF PER ANN RF

Max P (kW) 408.6350 301.9750

MAE (kW) 66.4783 66.5198 44.2708 25.6051 25.6964 20.9176

RMSE (kW) 104.4875 101.4455 59.3910 47.0946 42.0095 35.0088

MAPE (%) 42.2558 42.2822 28.1400 25.9903 26.0830 21.2323

V. CONCLUSION

Photovoltaic power is becoming more and more integrated

in modern grids, thanks to panels’ cost decrease and power

conversion advances. Hence, forecasting future power pro-

vided by PV sites becomes a necessity, to deal with inter-

mittence and volatility induced by this type of resources. This

paper proposed a predictor based on random forests, for day-

ahead power forecast. The random forest is characterized by

built-in cross validation, immunity to irrelevant inputs and

importance measures. This last feature is utilized to select

the most appropriate inputs of the predictor, in addition

to conventional correlation plots and profile analyses. The

forecaster was then built using 15 variants for 15 hours of

the day. Qualitative and quantitative analyses are performed

in order to assess the efficiency of the proposed method, with

and without prior knowledge of solar irradiance. Tests show

accurate and satisfactory results in most cases, and a good

ability to handle seasonal effects.
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