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Abstract. Wind power is becoming one of the most promising renew-
able energy sources. With a total capacity exceeding 486 gigawatts world-
wide in 2016, wind power optimization, forecast and control become
more challenging than ever before. Forecasting wind turbines output for
a period of time in advance is beneficial for grid managers, since it allows
them to optimize their generation plans and to control the production of
conventional thermal or nuclear plants. This paper proposes then a Gaus-
sian process based method for predicting the production of a wind farm
for one and two hours in advance. Both point and probabilistic forecasts
are performed through customizable prediction intervals with different
confidence levels. The model is tested using real data from Sidi Daoud
wind farm in northeast Tunisia. Results are analyzed and compared to
similar methods in terms of various assessment metrics.

Keywords: Wind power forecast - Short term -
Wind speed and direction + Gaussian process *+ Probabilistic forecast *
Prediction intervals

1 Introduction

Efficient exploitation of energy resources becomes more challenging in modern
grids, with the increasing penetration levels of renewable generation worldwide.
Optimized control of wind farms in particular is difficult due to wind inter-
mittence and complexity of weather patterns. Accurate forecast of future wind
power is therefore mandatory to ensure continuous and stable electricity supply.
Indeed, intermittent generation can inject disturbances into the grid, and may
cause frequency regulation problems. Probabilistic forecast is able to generate
different possible outcomes of future power, in order to take into account several
possible scenarios. The transition from deterministic to probabilistic predictions
is mandatory because of uncertainties associated with electricity generation and
trade. In fact, probabilistic forecast is a powerful tool to manage power reserves
and to optimize bidding strategies.
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New schemes for security evaluation are proposed in the literature to take into
account the disturbances induced by intermittent generation [1]. Among these
disturbances, previous research papers cite the effects on voltage stability [2]. The
impact of wind forecast uncertainty on power systems is likewise evaluated [3].
Under these circumstances, probabilistic forecast shows a high flexibility. Indeed,
it is proven that probabilistic wind power prediction can contribute to efficient
operation of electricity markets with high penetration levels [4]. Probabilistic
wind power forecast facilitates several tasks in modern power grids, such as
optimal setting of operating reserves [5], predictive control of battery energy
storage system [6], and unit commitment [7].

The state of the art of probabilistic wind power forecasting is already well
developed. A review of different methods can be found easily in the literature
[8]. Most methods make use of either physical or statistical models. Physical
models are generally based on numerical weather prediction, while statistical
methods focus mainly on time series. Artificial intelligence, machine learning,
and heuristic optimization are common approaches to deal with wind power and
speed forecast. For example, a framework based on the particle filter algorithm
is applied to predict the output of each wind farm apart [9]. Fuzzy k-means clus-
tering algorithm, support vector regression and quantile regression are utilized
in a probabilistic forecast framework [10]. Quantile regression is also combined
with extreme learning machine to generate nonparametric probabilistic fore-
casting, where quantiles are produced using a linear programming optimization
model [11]. A method based on Gaussian process, making use of a local mov-
ing window, is also proposed for this purpose [12]. Variants of this method are
also proposed, such as warped Gaussian process [13]. The k-nearest neighbors
algorithm is likewise utilized in probabilistic forecasting, either alone [14] or
combined with kernel density estimator [15]. Quantile regression for probabilis-
tic prediction is performed using a reproducing kernel Hilbert space framework
[16]. Double seasonal Holt Winters and conditional density kernel estimation
are developed in order to estimate the probabilistic density of wind power [17].
Sparse Bayesian learning and discrete wavelet transform are carried out in order
to solve the problem of wind power forecast [18]. Several other methods are also
developed, such as gradient boosting machine [19], radial basis function neu-
ral networks [20], kernel density estimator with logarithmic transformation [21],
Markov chain models [22], and sparse vector autoregression [23]. The abundance
of sophisticated methods proves the importance of probabilistic power predic-
tion and justifies the need for more advanced approaches to handle the increasing
uncertainty.

This paper proposes a short-term probabilistic wind power forecast based on
Gaussian process (GP). The method itself has already been used before. The
novelty, however, lies in the selection of inputs, commonly called features. In
order to take into consideration the spatial correlation between wind turbines,
the wind speed is averaged spatially and used as input. The wind direction is also
appended to the input vector. It will be proved that wind direction and spatially
averaged speed affect the overall farm production. The lead time is set to 1 and
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2h in advance. Nine prediction intervals are provided by the GP model according
to confidence levels ranging from 10% to 90%. Various evaluation metrics are
suggested to assess the forecast accuracy. To our best knowledge, the effects of
spatially averaged wind speed and direction in a Gaussian process forecaster
were not assessed before this work. The remainder of the paper is organized as
follows. Section 2 defines the forecast methodology, Sect. 3 presents and discusses
results, and Sect. 4 concludes the paper.

2 Forecast Methodology

2.1 Data Preprocessing

Renewable energy and smart grid technologies in Tunisia are getting more and
more attention by researchers [24,25], since they are in continuous development.
Therefore, the data used in this work will be taken from Sidi Daoud wind farm
in northeast Tunisia. The total installed capacity is 53.5 MW. The rated power
of the 70 wind turbines in the farm ranges from 330kW to 1320kW. Turbines
are aligned from northeast to southwest, perpendicularly to the wind dominant
direction. The wind speed is metered above the nacelle of each individual wind
turbine apart. The wind direction is measured from the meteorological mast
inside the farm, in addition to temperature, relative humidity and atmospheric
pressure. The power output of each turbine, in addition to the aforementioned
meteorological factors, are given in the form of time series sampled at 10 min for
the years 2010 and 2011.

The huge amount of data includes necessarily some errors. The preprocessing
is therefore mandatory. Major corrections are: filling gaps (missing samples) with
previous values, removing redundant and repeated samples, and avoiding sensors
failure periods (large periods with immovable or inconsistent values). In addition,
the overall produced power output of the farm is calculated, by summing the
power outputs of all turbines. Time series averaging is also proposed in order to
get new quantities. The averaging is either spatial, or temporal. Spatial averaging
is obtained by calculating the mean of 70 wind speed measures, in order to benefit
from spatial smoothing effect. It is proven in Fig.1 that the spatially averaged
speed is more correlated to the farm power output than the speed metered by
the meteorological tower. Temporal averaging is applied to the power output,
where each consecutive six values are replaced by their mean. This operation
provides smoother curves, and thus easier to predict.

2.2 Feature Selection

The feature selection is the process of choosing the appropriate inputs of the
forecaster. Let X be the input vector, and Y the provided output distribution,
intended to estimate the real output Y. In this paper, the lead time, or forecast
horizon, is set to 1 and 2h in advance. Therefore, all features will be selected
from hour A in order to predict power at hour h+ 1 or h+ 2. Let S be the wind
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Fig. 1. Wind spatially averaged speed (solid curve), wind speed from the weather mast
(dotted curve), and overall power output (solid curve with dots) on January 1°*, 2011

speed, D the wind direction, and P the wind power. S will be used to denote
the spatially averaged wind speed (mean of 70 measures), and P to denote the
temporal average of power output (mean of six consecutive values). Six values
of each quantity in {P, S, D} at hour h (from h : 00 to h : 50), will be selected
to predict the average power P at hour h+ 1 or h + 2. The input vector X, is
then expressed as follows:

X = [Pr00s - - +» Pr:50s Sn:005 ++-Sn:505 Dhioos - - - Dreso] (1)

Where Pj,.qp is the power measured at h : 00, Dy.39 is the wind direction metered
at h : 30, and so on. The total number of inputs is therefore 18. The average
power P, at hour h is naturally given by:

5
- 1
P, = 5 ; Pp.i0 (2)

The output Y provided by the GP forecaster, should be an estimation P of P
at hour A + 1 or h + 2, according to the required forecast horizon.

YA— = Pthl or }A/ = Ph+2 (3)

Past values of power are utilized according to the autocorrelation plot of
Fig. 2, which is extended to include 24 past hours. The autocorrelation reveals
the similarities between the power time series and its lagged version. Lags with
maximum similarity are those close to zero. Even with a lag of three hours, the
correlation is still higher than 0.8. Therefore, it is judicious to utilize the six
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1 Autocorrelation function of wind power
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Fig. 2. Autocorrelation plot of wind power time series, sampled at 10 min
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Fig. 3. Histogram of wind direction samples in 2011

power measurements at the current hour h in order to predict the average power
of the next hours h + 1 and h + 2.

The spatially averaged wind speed S is the second category of inputs. It is
selected according to Fig. 1, where its correlation with power output is obvious.
Consequently, it has certainly a great impact on the generated power. The third
family of inputs, which is the wind direction D, affects also the power output. The
distribution of wind direction occurrences in 2011 are given in Fig. 3, recorded
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Surface fit in 2011
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Fig. 4. Surface plot of wind power fitted to averaged speed and direction in 2011

each 10 min throughout the year. Major directions are northwest and southeast,
which are perpendicular to the turbines alignment in the farm. It is therefore
expected that power is maximum for these directions in particular, and minimum
elsewhere. The surface plot of Fig. 4 asserts this assumption, where the generated
power is fitted to wind speed and direction. Obviously, the average wind speed is
the most influential factor that drives the power output. However, at the rated
speed of 15 m/s, some peaks and valleys appear on the surface according to wind
direction. Indeed, peaks of power arise for northwest and southeast directions,
while power valleys dominate the remainder.

2.3 Mapping Function

This section describes the input/output mapping function of the Gaussian pro-
cess (GP). The GP has several advantages. It is probabilistic; different prediction
intervals can be constructed according to different confidence levels. Further-
more, it is versatile. Different kernels may be specified according to a covariance
function. The GP is utilized in this paper for supervised regression. Let S, be a
training set containing n observations S, = {(X1,Y1),...,(Xi, Yi), oo, (X, Yo) }s
where X; is a vector of dimension d (d = 18 in this paper), and Y; is the corre-
sponding scalar target. The set may be written S,, = {X, Y}, where X isadxn
matrix. Let X* be an unseen input vector, i.e. does not belong to S,,. The aim of
the prediction is to determine the output scalar Y* that corresponds to this new
input. According to the GP, the target Y* follows a normal distribution [26]:

Y* ~ N(p, 0?) (4)

Where:
i= K(X, X)K(X, X)"lY (5)
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o=K(X*"X") - KX, X")K(X,X)'K(X*, X) (6)

K is a covariance function, for example the squared exponential:
* 1 * |2
(X, X*) = exp (—5|X = X7 (7)

N is the normal distribution, whose probability density f is given by:

1 _ 2
exp (z—p)
V2no? 202
Several prediction intervals may be obtained from Y* through quantiles. Let

F be the cumulative distribution function of the random variable Y*. The a'*
quantile of Y* is given by [27]:

Qy+(a) = FyH (o) = inf{y : Fy=(y) > a};y €R (9)

Where 0 < o < 1. For example, the Qy~(0.6) is the quantile below which 60%
of Y* observations are expected. Prediction intervals (PI) are constructed from
quantiles according to confidence levels. For instance, the PI associated to the
confidence level 80% is defined by:

Plgoy (Y™) = [Qy~(0.10), Qy~(0.90)] (10)

fz) = (8)

The median value Qy -~ (0.50) will be utilized for point forecast and for comparison
with similar methods. Nine PI are constructed for probabilistic forecast, ranging
from 10% to 90%.

3 Case Study

3.1 Assessment Metrics

In order to evaluate quantitatively the prediction accuracy, several metrics are
already in use by researchers. For point forecast provided by the median value
Qvy~(0.50), four assessment criteria are proposed in this paper. They are the
mean absolute error (MAFE), the root mean squared error (RMSE), the mean
absolute percentage error (MAPFE) and the mean absolute scaled error (MASE),
defined by:

1 -
MAE = - ;:1 |P; — P (11)

IS (B - Py (12)

100 (13)
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MASE:EZ . il (14)
§ &=
=t 8_12|Pj—Pj—1|
e

Where s is the number of hours in the testing perlod For each hour h, the

quantity P, stands for the predicted average power Ph+1 or Ph+2 provided by
the GP median value Qy~(0.50), according the prediction horizon. Naturally,
P; denotes the actual measured average power ]Sh+1 or I5h+2, also according to
the forecast horizon. Py is the actual power averaged over the whole test period,
p,=1 Zz 1 Pi. Two additional metrics are suggested for probabilistic forecast,
which are the Pinball loss function (PLF), and the Winkler score (WS). The
PLF is defined for each quantile Qy«(a) by [28]:

PLF(Qy-(a)) = (15)
{(1 —a)(Qy~(a) — P,) if P; < Qy~(a)
a(P; — Qy-(a)) if P;>Qy-(a)

Where a € {0.1,0.2, ...,0.9}. In addition, let PI .o (Y ™) be the prediction interval
associated to the confidence level ¢% = (1 — 2«) x 100:

Pley(Y™) = [Qy+(a),Qy-(1 — )] (16)

Where a € {0.05,0.10, ...,0.45}. The width of PI.q(Y™*) is denoted d.9, with
dep = Qy=(1 — ) — Qy~ (). The WS is defined by [28]:

WS (PLoy(Y")) = (17)
(sc% Jor P; € PIL%(Y*)
Sev + (QY*( )—F;)  for P; <Qy~(a)
o + é(Pi —Qy-(1—a)) for P, > Qy-(1-a)

All proposed metrics are proposed to quantify the distance between real and
predicted samples, but from different points of view.

3.2 Results and Discussion

The aforementioned GP forecaster is tested for a lead time of 1h in advance, on
four different weeks in 2011. The seven first days, 15 to 7" day of February, May,
August and November, are selected for this purpose. Test periods are selected
intentionally across different seasons in order to verify the prediction accuracy
under different circumstances. Forecast results are given in Fig. 5 in the form of
fan plot, for August and November only. Only four days of each period are shown
for sake of clarity. Actual power is represented by the dashed curve, whereas point
forecast is represented by the solid curve. The nine prediction intervals, ranging
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Fig. 5. Actual curve and prediction intervals of one hour ahead wind power forecast

from 10% to 90%, are given in the form of color gradient. The darkest color
stands for the narrower PI (10%), and the lighter color stands for the wider PI
(90%).

For this short lead time of 1 h in advance, results of point forecast are already
satisfactory. With the exception of some sudden and very sharp variations, the
predicted curve succeeds to follow the major trends of the actual curve. Forecast
accuracy is verified under different scenarios, even with very spiky curves like
those of November, or abnormally low production like that of August. The GP is
compared to some conventional prediction methods, namely persistence (PER),
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artificial neural networks (ANN) and support vector machines (SVM). Compar-
ison is performed in terms of the four aforementioned metrics, MAE, RMSE,
MAPE, and MASE. Results are given in Table 1, where all metrics are computed
on the first 7 days of each test month. With the exception of November, the GP
gives always the lower error. In fact, the special spiky curve in November makes
the prediction more difficult.

Table 1. Evaluation metrics of one hour ahead point forecast using four different
methods

Period 1 to 7 February 1 to 7 May

Criterion | PER ANN |SVM |GP PER ANN |SVM |GP
MAFE 2.9533 | 2.7317| 4.2068 | 2.3509| 3.8553 | 2.9549| 3.9594 | 2.8284
RMSE 4.2109 | 4.3042| 7.0569 | 3.6503| 5.7793 | 4.3870| 5.8416 | 4.3202
MAPE |14.1811|13.1170|20.2002 | 11.2883 | 17.0541 | 13.0710 | 17.5148 | 12.5114
MASE 1.0036 | 0.9283| 1.4296  0.7989| 0.9956 | 0.7631| 1.0225| 0.7304
Period 1 to 7 August 1 to 7 November
Criterion | PER ANN |SVM | GP PER ANN |SVM |GP
MAFE 1.2273 | 1.1110| 1.7525| 0.9724| 3.0585| 2.6699| 4.2139| 3.0737
RMSE 2.0932| 1.6665| 2.6286| 1.5260| 4.5172| 4.2176| 7.6371 4.8488
MAPE |25.6834 |23.2499 | 36.6736 | 20.3498 | 19.7480 | 17.2389 | 27.2086 | 19.8463
MASE 1.0116 | 0.9158 | 1.4445| 0.8015| 1.0024| 0.8750| 1.3811| 1.0074

Table 2. Evaluation metrics of one hour ahead probabilistic forecast

PLF | February | May | August | November | WS | February | May August | November
0.10 | 0.6411 0.7327 | 0.4172 | 0.7069 90% | 11.1283 | 10.8624 | 9.3174 | 8.6480
0.20 | 0.9153 1.0901 | 0.5379 | 1.0374 80% | 8.6704 8.4632 | 7.2595 |6.7379
0.30 | 1.0766 1.2905 | 0.5334 | 1.2514 70% | 7.0120 6.8445 | 5.8710 | 5.4492
0.40 |1.1879 1.3849 | 0.4675 | 1.3902 60% | 5.6940 5.5580 | 4.7674 | 4.4249
0.50 |1.2417 1.4050 | 0.4837 | 1.4681 50% | 4.5633 4.4543 | 3.8207 | 3.5462
0.60 | 1.2650 1.3898 | 0.5780 | 1.4841 40% | 3.5478 3.4631 | 2.9705 |2.7414
0.70 |1.2307 1.3045 | 0.6063 | 1.4136 30% | 2.6069 2.5446 | 2.1827 |1.7314
0.80 |1.0798 1.1272 | 0.5596 | 1.2384 20% | 1.7140 1.6731 | 1.4351 | 1.1207
0.90 |0.7788 0.8144 | 0.4012 | 0.9287 10% | 0.8502 0.8299 | 0.7118 | 0.6237

The probabilistic forecast is useful in the presence of some shifts between
actual and predicted curves. In many cases, this shift is compensated by pre-
diction intervals. This compensation, albeit not very clear, can be observed in
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February and May in Fig. 5. Indeed, prediction intervals for a lead time of one
hour in advance are narrow, and therefore their usefulness does not show up
properly. The PLF and WS are computed in order to evaluate the prediction
accuracy. Results appear in Table2. The PLF is evaluated for each quantile,
where a € {0.1,0.2,...,0.9}, and averaged over the whole test period of 7 days
in each month. In a similar manner, the WS is calculated for each prediction
interval, with confidence levels ranging from 10% to 90%. It is likewise averaged
over the whole test period. For both criteria, lower values reflect more accu-
rate prediction. The PLF, for all quantiles, has lower values in August. Since
the PLF characterizes only the forecast sharpness, it is expected that August
results will be the best. Indeed, the actual power curve in August is much less
spiky than other months, and it is consequently more predictable. However, the
WS is minimum in November. In fact, the WS depends on PI widths. Since
November PI are very narrow, the November WS is naturally lower than that
of other months.

Table 3. Evaluation metrics of two hours ahead probabilistic forecast

PLF | February | May |WS |February | May

0.10 | 1.0860 1.4228 | 90% | 19.8559 | 19.3694
0.20 | 1.6272 2.0687 | 80% | 15.4703 | 15.0913
0.30 |1.9315 2.4245 | 70% | 12.5113 | 12.2048
0.40 |2.1278 2.5777160% | 10.1597 | 9.9107
0.50 | 2.2303 2.6351|50% | 8.1421 7.9426
0.60 | 2.2167 2.6351|40% | 6.3303 6.1752
0.70 | 2.1191 2.4954 | 30% | 4.6514 4.5374
0.80 | 1.8663 2.1713|20% | 3.0583 2.9834
0.90 | 1.3594 1.5628 | 10% | 1.5169 1.4798

Figure 6 shows the forecast results for a lead time of two hours in advance,
from the 1% to the 7" day of February and May 2011. In this case, the point
prediction encounters some difficulties. In many cases, a shift of one or two hours
appear between actual and predicted curves. In this case, prediction intervals
reveal their advantages. With larger bounds than those of hour-ahead forecast,
PI are able to cover the actual curve in most cases. In February for example, the
dashed curve is almost always covered by at least one PI, with the exception of
the spectacular increase at the first hours of 3" February. The same phenomenon
is observed in May. The inconvenient that may be cited here, is that very spiky
curves cannot be followed easily even in the presence of different PI. However, the
forecast accuracy is pretty satisfactory, and it is far away from point prediction
in terms of sharpness. The PLF and WS are computed in case of two hours
ahead prediction for the seven first days of February and May. The results, for
each quantile and PI, are given in Table3. Values of PLF and WS are a bit
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3 to 6 May 2011, 2 hours ahead prediction
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Fig. 6. Actual curve and prediction intervals of two hours ahead wind power forecast

higher now, which is expected for longer forecast horizons. In terms of PLF', the
prediction in February, with respect to May, is somehow better. Nevertheless, in
terms of WS, both months are almost equal.

4 Conclusion

This paper proposed a short-term wind power forecasting approach based on
Gaussian process (GP). The GP is a probabilistic and versatile method, able to
provide several prediction intervals with different confidence levels. The forecast
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methodology was organized as follows. First, a set of wind power, speed and
direction from a wind farm in Tunisia is considered and processed. Then, an
analysis is carried out in order to select the best candidates to the forecaster
input. Finally, an input/output mapping function is built using the GP specific
equations. The output of the model was utilized for one hour and two hours of
prediction in advance. In both cases, the GP forecaster shows very satisfying
results in terms of several evaluation metrics. The future work involves the opti-
mization of GP parameters, and the refinement of inputs with the intention of
improving the forecast accuracy.
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