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Abstract—Load forecast is one of the most important tasks
in modern and smart grids. With the integration of renewable
intermittent sources and the adoption of demand response
strategies, an accurate short-term prediction becomes mandatory.
Modern forecast approaches do not merely estimate future
values, but provide also confidence intervals with different widths
and probabilities. Therefore, this paper proposes a probabilistic
day-ahead load forecast approach based on quantile regression
forests. Quantile regression forests are extensions to random
forests that provide confidence intervals instead of single points.
The forecaster inputs are chosen according to measures of corre-
lation and importance, profile analysis and wavelet decomposition
of load curves. Several tests are performed using real data
sets from the Ontario market. The results reflect the accuracy
and the effectiveness of the proposed model under different
circumstances.

Index Terms—Load forecast, day-ahead, feature selection,
quantile regression forest, probabilistic forecast, confidence in-
tervals.

I. INTRODUCTION

Due to the stochastic and uncertain nature of load, an accu-

rate load forecasting is still a great challenging problem. Load

prediction becomes a center of interest for several researchers,

especially after the integration of renewable energy sources

into grids. Indeed, intermittent energy sources and demand

side management make the load forecast more challenging.

However, most of the load forecast techniques suffer from lack

of performance and accuracy. Research is still looking for the

best and the most effective method to ensure balance between

demand and supply in electricity markets, and to maintain the

grid stability.

Based on time scale, load forecasting can be classified

into three categories: short, medium, and long-term forecast.

Short-term load forecast has a time horizon ranging from few

minutes to few weeks ahead. Accurate short-term prediction

is very useful for economic dispatch. The mid-term forecast

horizon ranges from one month to two years, and it is

mandatory for maintenance scheduling. Long-term forecast is

sometimes extended to 20 years ahead or more. It is aimed at

system expansion planning [1]. This paper will focus only on

the short term, and specifically day-ahead forecast.

In the literature, a variety of methods have been proposed

in order to address forecast accuracy issues. These methods

are classified into three categories: statistical, artificial in-

telligence, and hybrid. Statistical methods use mathematical

models that depend on historical load data and extra variables

affecting the future load. They try to establish equations that

match these quantities to future load values. This family of

methods includes the well-known Box-Jenkins models; autore-

gressive integrated moving average (ARIMA) [2], autoregres-

sive moving average (ARMA) [3] and autoregressive moving

average with exogenous variables (ARMAX) [4]. Statistical

methods include also exponential smoothing [5] and Kalman

filter [6]. These methods are simple to implement, but they are

unable to update their prediction strategies or to learn the new

trends of load patterns. Because of these limitations, artificial

intelligence methods are introduced. Intelligent methods are

black-box models with unknown internal dynamic, which is

established after a training process or according to a set of

fuzzy rules. They can handle the problem of nonlinearity

existing in the load series. This family of methods includes

artificial neural networks (ANN) [7], fuzzy logic [8], random

forests (RF) [9] and support vector machines (SVM) [10].

One of the major drawbacks of this type of methods is

the need for optimization and parameter tuning to guarantee

a good accuracy. Hybridization is one of the solutions to

overcome these drawbacks. Hybrid methods are combinations

of two or more of previous methods. For example, neural

networks may be combined with fuzzy logic and wavelets

transform [11]. It is possible also to use a Bayesian neural

network with k-means clustering algorithm and time series

analysis [12]. Hybridizing fuzzy support vector machine and

linear extrapolation is proposed likewise [13]. Nevertheless,

all mentioned methods focus on point forecast. Hence, they

do not provide information about any possible uncertainty or

error margins. Probabilistic forecast and confidence intervals

are proposed in this context.

After the 2014 edition of the Global Energy Forecasting

Competition (GEFCom), researchers are paying more attention

to probabilistic forecast, which provides prediction intervals

with different probabilities in addition to a median value.

The aim of this type of forecast is to provide confidence

intervals (CI) that can handle the uncertainty associated with

prediction results. These intervals are used to assess the

predictor accuracy and they are indispensable in many fields of
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application. A confidence interval defines a margin of error; it

does not estimate directly the point, but the chance to contain

this point. Each CI has upper and lower bounds that define

its borders. A practical methodology to generate probabilistic

load predictions is to perform quantile regression averaging on

sister forecasts [14]. Likewise, it is possible to use fuzzy time

series for predicting intervals [15]. These approaches may be

compared to regular point forecasts. A recent review, including

several techniques of probabilistic electrical load forecast, can

be found in the literature [16].

This paper proposes a day-ahead load forecasting method.

The prediction is probabilistic; nine imbricated confidence

intervals are provided in addition to a median value for each

hour of the day. The load data are first analyzed with the

aim to select the most appropriate inputs for the forecaster.

The load curves are decomposed using wavelets in order to

extract the different levels of periodicity. The inputs are chosen

according to these decompositions, in addition to correlation

and importance measures. Then, dedicated forecasters are built

for each hour of the day, after a large training period and via an

online learning procedure. The quantile forest (QF) is chosen

to construct the forecasters. The QF has all the advantages

of random forests; it is not parametric, immune to irrelevant

inputs, has a built-in cross validation process, and has a proper

importance measure of its inputs. In addition, it provides the

required intervals. The remainder of the paper is organized

as follows. Section II analyzes the load data and extracts the

periodicity levels. Section III depicts the forecast strategies;

choosing inputs and building forecasters. Section IV shows

and discusses qualitative and quantitative results. Section V

concludes the paper.

II. DATA ANALYSIS

A. Grid data and preprocessing
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Fig. 1. Distribution of Ontario hourly load throughout 2014

The Ontario market is chosen to assess the performance of

the proposed method, since it is one of the most studied cases

in literature, along with Pennsylvania-New Jersey-Maryland

Interconnection (PJM) and Australian market. Ontario is one

of the most volatile electricity markets in the world. It is

characterized by real time pricing, which may affect the load

demand to some extent. Let L(d, h) be the hourly load time

series, where d stands for the day, and h for the discrete time

in hours. The L(d, h) distribution at the Ontario market over

the year 2014 is given in Fig. 1. Obviously, most values are

between 11 and 22 MW. The shape of the smoothed histogram

resembles to a Gaussian centered on 16 MW. There is no

discontinuity or extreme values that may disturb the training

process, and this is beneficial for the prediction machine.

Generally, extreme values are considered outliers and they

have nasty impact on the forecast quality. In order to conserve

the dynamics of the time series, no preprocessing is applied to

L(d, h). In addition, day type and season indexes are appended

to L(d, h) as extra information, and they will be detailed later.

Temperature was ignored since it has been already included in

the season index. This paper uses the data of 2014 and 2015

for training and testing purposes.

B. Profile analysis
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Fig. 2. Original and decomposed (3rd level) hourly load curves, from 6 to
19 January 2014

The profile analysis is the description of the load curve

evolution through time for different horizon scales. Since load

is biased by calendar effects, four levels of periodicity are

supposed to appear; daily, weekly, seasonal and yearly. The

yearly effect will be disgraced since it is only useful for long-

term predictions. The daily periodicity may be extracted by

wavelet packet decomposition [17]. The original load signal is

then decomposed to the level 3, and the second signal (starting

from the lowest frequency) is grabbed among the 8 generated

signals. This signal appears in Fig. 2 just below the load

curve, where it has been shifted to the top for clarity purpose

(originally it was oscillating around zero). There is an obvious

daily periodicity that should be considered while building the

forecaster. Weekly periodicity needs further decomposition to



be viewed, since it is located at lower frequencies. Therefore,

the decomposition is performed to the sixth level, and the

fourteenth signal is selected among the 64 generated signals.

This signal is given in Fig. 3, where it is shifted to the top.

Weekly periodicity appears in the form of difference between

load demand on working days and weekends. This type of

periodicity justifies the use of day type index.
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Fig. 3. Original and decomposed (6th level) hourly load curves, from 1 to 31
January 2014
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Fig. 4. Daily average load curve throughout 2014, with seasonal means

The seasonal effect cannot simply be extracted by wavelet

decomposition. Indeed, the sub-sampling at each new level

causes the signal points to be scarcer until they vanish

completely. However, there are other methods to handle the

seasonal periodicity. Fig. 4 shows the average daily load

throughout the year 2014. The curve may be divided into

5 time periods with different average values (represented by

horizontal lines). The second and fourth periods have almost

the same average value, so they may be considered one single

season. Based on this criterion, four seasons are defined,

denoted season 1 to season 4, and sorted from lowest to highest

average value. The seasonal effect is a direct consequence

of temperature. Heating and cooling systems are the most

consuming devices, so they have huge impact on the demand.

This fact explains why the load increases in winter and

summer and decreases in spring and autumn.

III. FORECAST STRATEGY

A. Feature selection

The feature selection process is the art of choosing the

most appropriate inputs for the forecaster. These inputs, called

features or regressors, should be the most important factors

driving the future load. The autocorrelation plot is one of the

commonly used methods for selecting features. The autocor-

relation function of load in January 2014 appears in Fig. 5.

Maximum correlation measures are detected at lags of 24 and

168 hours, which asserts both daily and weekly periodicity.

The similarity between the load curve and its 24-hours-lagged

versions pushes towards building a dedicated forecaster for

each hour. Each forecaster should provide L̂(d, h), where

L̂(d, h) is the predicted load at hour h on day d, h = 1, ..., 24.
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Fig. 5. Autocorrelation plot of the load time series in January 2014

In order to keep the daily periodicity, it is judicious to con-

sider the load values of past days as inputs. Then, L(d−1, h)
and L(d− 2, h) are selected as regressors. According to Fig.

5, there is no need to get further samples at the same hour

h, since similarity measures are almost equal beyond d − 2.

However, adding neighboring samples such as L(d−1, h−1)
and L(d− 1, h+1) may be beneficial. Obviously, L(d, h− 1)
cannot be added, otherwise it will be hour-ahead forecast. The

four features are then selected according to two directions; d

direction and h direction. This particular selection encourages

neighboring and tries to increase similarity. Until now, all

chosen inputs are endogenous, which means extracted from

the past output values. Exogenous inputs are also necessary,

which are not historical measures of load. For example, a day



index Id(d) may be appended to the input vector. The index

is a value assigned to the day according to its position in the

week. For instance, 1000 is assigned for Mondays, 2000 for

Tuesdays,... and 7000 for Sundays. This index helps to keep

the weekly periodicity. Indeed, the forecaster can learn easily

that load is slightly lower when the day index is 6000 or 7000,

which means weekend. Finally, in order to reflect the seasonal

periodicity, a season index Is(d) is also added. This index will

be the same for all the days d of the same season, according

to Fig. 4. Is(d) is equal to 0 in season 1, 10000 in season

2, 20000 in season 3, and 30000 in season 4. Huge values

are intentionally chosen so as to give some importance to this

effect.

TABLE I
IMPORTANCE AND CORRELATION WITH OUTPUT OF SIX INPUTS AT NOON,

ON OCTOBER 1ST , 2015

Input Importance measure Correlation with output

Id(d) 2.5417 -0.3350

Is(d) 1.1477 0.5318

L(d− 1, h) 1.0369 0.7733

L(d− 2, h) 0.4271 0.5747

L(d− 1, h− 1) 0.7932 0.7491

L(d− 1, h+ 1) 0.9486 0.7810
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Fig. 6. Average daily load in 2014, in terms of day type and season

The six chosen inputs are given in Table I, along with

measures of importance and correlation with the output, on 1st

October 2015 at noon. The importance measures are among

intrinsic characteristics of the random forest [18]. These mea-

sures assess the importance of each input by computing a

specific score. The more this score is high, the more the input

is important. As it can be seen, the most important input is

the day index Id(d), followed by season index Is(d) and past

load L(d − 1, h), respectively. The maximum correlation is

given by L(d − 1, h) and L(d − 1, h + 1), while correlation

with Id(d) is negative. Negative correlation is expected, since

load is supposed to decrease when the day index increases.

Correlation with Is(d) is positive, and this also expected.

Indeed, the highest seasonal indexes are assigned to most

consuming seasons. Fig. 6 shows a surface that fits the average

daily load in 2014 to day type and season. The correlation with

Id(d) and Is(d) are well justified by the surface shape. The

load increases following the season direction and decreases

following the day direction.

B. Building the forecasters

The forecasters are built using quantile regression forests

[19]. The quantile forest is a generalization of the random for-

est (RF) used for regression. A random forest is an ensemble

method that combines the prediction of several uncorrelated

regression trees via an algorithm called bagging. It is then a

learning machine that needs a dedicated training process. The

RF has a number of advantages over other artificial intelligence

machines. It is characterized by built-in cross validation and

intrinsic measure of importance. In addition, it is immune to

irrelevant inputs. However, it provides only one single output

for each input vector. It is then used only for point forecast.

In order to add confidence intervals for the prediction, the

quantile forest (QF) is elaborated. The QF does not return the

average response of all trees, but the full distribution of all

responses. This distribution, which has the form of confidence

intervals, is useful to handle the forecast uncertainties. In this

paper, 9 confidence intervals are considered. The QF forecaster

should then return 19 values for each input vector; one median

value, and 2 bounds for each interval.

The followed learning process is online. It means that a

new training is performed for each new day in the test period.

Naturally, this training should be repeated 24 times to build the

24 forecasters of the day. For example, in order to predict the

load on day d, all the period from d−360 until d−1 is chosen

for building 24 forecasters. To forecast load on day d+1, the

period from d − 359 until d is chosen for building 24 new

forecasters, and so on. The training period is sliding in order

to learn the new load patterns and to limit transit problems

between seasons. In this paper, four months are used for test.

For each individual day within these months, a total training

period of 360 days is needed.

IV. CASE STUDY

January, April, July and October 2015 are the chosen

months for test. They are intentionally chosen across seasons

in order to assess the forecast quality under different scenarios.

Point forecast results are given by the median prediction value,

whereas probabilistic forecast is performed through prediction

intervals. Both median value and interval bounds are provided

by the QF forecasters depicted in the previous section. Fig. 7

shows the day-ahead forecast results in four weeks, from the

9th to the 15th day of each month. In each case, a black curve

represents the point forecast, while nine prediction intervals

are given in the form of blue color gradient. The darkest blue

zone represents the 10% prediction interval, which is supposed
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Fig. 7. Predicted confidence intervals and actual load curves throughout four test weeks

to contain 10% of measured points. It has the narrowest

bounds. The subsequent intervals are ranging from 20% to

90%. Their bounds are getting larger and their colors are

getting lighter as they are getting away from the median value.

Forecast results in January are pretty satisfying. Almost all

measured points are inside bounds. Results in April are also

within limits, although they are a bit overestimated. Generally,

narrower intervals reflect better accuracy. However, prediction

intervals on April 13th are somehow large. The same thing is

observed on July 13th and 14th, although the first four days

were very accurate. Indeed, the forecaster predicted a huge

variation on July 13th, but it was not able to determine if it

would be an increase or a decrease. Results in October are

almost satisfying, despite some large intervals.

Qualitative assessment through curves is necessary, but it

is not enough. Quantitative evaluation through error metrics

is also required. For this purpose, three evaluation criteria

are proposed: the mean absolute error (MAE), the root mean

squared error (RMSE) and the mean absolute percentage error

(MAPE). If the test period contains n days, these errors are

defined by:

MAE =
1

24n

n
∑

d=1

24
∑

h=1

|L̂(d, h)− L(d, h)| (1)

RMSE =

√

√

√

√

1

24n

n
∑

d=1

24
∑

h=1

(L̂(d, h)− L(d, h))2 (2)

MAPE = 100×
1

24n

n
∑

d=1

24
∑

h=1

|L̂(d, h)− L(d, h)|

L(d, h)
(3)

The MAE is used to measure the average distance between

predicted and actual quantities, through the absolute value to

avoid any possible offset. The RMSE does the same thing but

with a small difference; the error offset is avoided by squaring.

The MAE and RMSE are expressed in terms of MW. The

MAPE divides the absolute errors by actual load values in

order to get a percentage. It provides then a normalized metric.

All these criteria apply only to point forecast.

Table II shows the proposed metrics computed in four test

months. Obviously, the RMSE is always a bit higher than

MAE. The MAE does not exceed 1 MW, while the MAPE

ranges from 3% to 5%. Nevertheless, these values are not



significant if they are not compared with similar forecast

methods. Therefore, the persistence (PER) and artificial neural

networks are also proposed as forecasters. The persistence

assumes simply that future load values are equal to actual

values. The ANN is a feedforward network with one hidden

layer of 10 neurons. According to Table II, the QF gives the

best results in most cases. Although it is close to ANN in

terms of accuracy, it provides lower errors especially in July

and October. In addition, the QF has an advantage over ANN;

it does not need to be tuned or optimized. However, the ANN

has several parameters to adjust. Any bad choice of these

parameters degrades significantly the forecast accuracy.

TABLE II
COMPARISON OF DIFFERENT FORECAST METHODS IN TERMS OF THREE

PROPOSED CRITERIA

Criterion Persistence Quantile forest Neural network

January

MAE 0.8130 0.5953 0.5943

RMSE 1.0417 0.7653 0.7745

MAPE 4.6536 3.4320 3.4317

April

MAE 0.7453 0.5406 0.5516

RMSE 1.0305 0.7039 0.7347

MAPE 5.1488 3.7543 3.8020

July

MAE 0.8877 0.8744 0.9274

RMSE 1.1838 1.1292 1.2127

MAPE 5.3905 5.1923 5.5253

October

MAE 0.5950 0.4351 0.4993

RMSE 0.8687 0.6445 0.6925

MAPE 4.1480 3.0999 3.5108

V. CONCLUSION

Electrical load forecast is nowadays a mandatory and chal-

lenging task for grid managers. Accurate short-term forecast

in particular is extremely important for dispatch. In this study,

a probabilistic load forecast method was proposed for this

purpose. The quantile regression forests were chosen for

building 24 dedicated forecasters for each hour of the day. The

learning procedure was online with large training periods. The

inputs were chosen according to correlation and importance

measures, and after analyzing different levels of periodicity.

Results were pretty satisfying whether under qualitative or

quantitative assessment. The confidence intervals provided by

quantile forests offered useful tolerance margins in case of er-

rors. In addition, the proposed model showed its effectiveness

and superiority once compared to similar traditional methods.
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