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The electrical load forecast is getting more and more important in recent years due to the electricity
market deregulation and integration of renewable resources. To overcome the incoming challenges
and ensure accurate power prediction for different time horizons, sophisticated intelligent methods
are elaborated. Utilization of intelligent forecast algorithms is among main characteristics of smart grids,
and is an efficient tool to face uncertainty. Several crucial tasks of power operators such as load dispatch
rely on the short term forecast, thus it should be as accurate as possible. To this end, this paper proposes a
short term load predictor, able to forecast the next 24 h of load. Using random forest, characterized by
immunity to parameter variations and internal cross validation, the model is constructed following an
online learning process. The inputs are refined by expert feature selection using a set of if–then rules,
in order to include the own user specifications about the country weather or market, and to generalize
the forecast ability. The proposed approach is tested through a real historical set from the Tunisian
Power Company, and the simulation shows accurate and satisfactory results for one day in advance, with
an average error exceeding rarely 2.3%. The model is validated for regular working days and weekends,
and special attention is paid to moving holidays, following non Gregorian calendar.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Electrical load forecast is a challenging task for power operators.
It is an old research theme that followed the evolution of power
installations and computational techniques. Also, it is getting more
important by the beginning of the 21th century due to the emer-
gence of renewable energy resources and smart grids. Load forecast
means the prediction of the future evolution of the electric load
signal of an individual apartment, a local grid, a region or even a
whole country. This prediction is performed for a period of time
called forecast horizon through one or several time steps. An
accurate power prediction of one or several hours ahead is very
important to load dispatch, unit commitment and energy exchange
decisions. Predicting load for larger time horizon is also useful
for maintenance planning and energy management policies.
Increasing the forecast error of 1% may entail a spectacular
increase in operational costs [1], thus the tiniest improvement in
accuracy is interesting. The error may be an underestimation or
an overestimation of power, and both entail difficulties to balance
supply and demand. The concept of smart grid implies utilization
of intelligent computing techniques, including power forecast, to
manage supply, in order to match the demand in real time. The
supply management is closely related to spinning reserve, which
is the total synchronized capacity, minus losses and load. Then,
forecasting load means predicting the spinning reserve, which is
very important in cases of sudden huge demand, outage or failure
of some generators. When the forecast is accurate, the spinning
reserve becomes ready to offset rapidly any deficiency. For longer
horizons, the prediction of the load profile determines the amount
of capacity to add to the overall network, in order to prevent any
contingency.

Load forecast becomes harder than before due to two main rea-
sons. First, privatization and deregulation of electricity market in
many countries mean that energy consumers are free to choose
their provider among several operators. Second, high penetration
of intermittent resources in the grid, namely wind and solar
energy, increases the degree of uncertainty due to their
non-regular behavior. The deregulation of the market entails vary-
ing electricity price, which pushes customers to consume when the
energy cost is low, and therefore new forecasting schemes are
required [2]. In this case, price forecast is performed along with
load forecast [3]. Having sparse customers is also a consequence
of deregulation. All these aspects may lead to load curves that
are non-smooth and poorly correlated with weather variables.
This is not the case of the Tunisian electricity market, subject of
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this research, where privatization is still limited. In 2013,
only 3046 GW h was generated by private companies, while
13,947 GW h was produced by the government corporation. The
price is therefore fixed and the deregulation problem does not
arise. However, intermittent sources are integrated in the grid by
the presence of two wind farms. The wind power generation was
357.8 GW h in 2013, which means 2.6% of the total production.
Despite this tiny contribution, intermittent energy may affect the
grid even with low degree of penetration [4]. To this end, predic-
tion of the wind generation should be carried out along with load
forecast, and this was subject of a previous work for the Tunisian
wind farms [5]. These two types of forecast, when coupled
together, ensure better management of the residual load which
must be covered by classical power plants. The small area of the
country and the installed power limited to 4425 MW make it
possible to forecast the entire country load demand as a whole. It
is also possible to use the weather measurements of one station
located in Tunis, the capital and the most consuming city, instead
of considering many scattered weather stations [6,7].

In order to face the above mentioned challenges, this paper pro-
poses a short term prediction model using the random forest tech-
nique. This model is designed for day-ahead prediction by a step of
one hour, with respect to the specifications of the Tunisian power
installation; such as small area, warm weather, no deregulation
and presence of intermittent energy. The main contribution of this
paper is to demonstrate the flexibility of random forests when
associated with expert selection, to handle any load profile, and
in particular to fit with complex customers behavior. The proposed
approach shows high accuracy and effectiveness in the four sea-
sons and for particular days, such as weekends and holidays,
whether they are moving or not. The remainder of the paper is
organized as follows: Section 2 gives a bibliographic overview of
existing forecast methods, Section 3 details the necessary
mathematical development, Section 4 analyzes the load profile
and clarifies the prediction strategy, results and comparisons are
given in Section 5 and finally, Section 6 concludes the paper.
2. Literature review

2.1. General approaches for short term forecast

Prediction is a regression analysis applied to time series, which
means studying the relationship between several variables, namely
future and past samples. The load signal is a time series, and a pre-
dictor should estimate its future evolution in terms of past samples
and eventually some exogenous variables affecting the future load.
Based on this concept, several forecast models were elaborated in
the literature for the very short term; less than one hour, the short
term; one hour to several days, the medium term; one to several
months, and the long term; one to several years in advance. It is
possible to classify approaches to conventional statistical methods,
artificial intelligence methods and hybrid methods.
2.2. Conventional statistical methods

Statistical methods are white-box models where outputs are
explicitly related to inputs through mathematical equations. This
family of methods includes the simplest linear regression [8], mul-
tiple regression [9,10], the well-known Box–Jenkins models;
autoregressive moving average (ARMA) [11] and autoregressive
integrated moving average (ARIMA) [12,13], exponential smooth-
ing (Holt–Winters) [14] and Kalman filter [15]. These methods
are simple to implement and well adapted for the short term,
but unable to handle the non-linearity existing in the load series.
This fact pushes towards using intelligent methods.
2.3. Artificial intelligence methods

Artificial intelligence methods are black-box models where the
internal dynamic is unknown. This family includes three main
approaches, namely fuzzy inference (expert) systems (FIS)
[16,17], artificial neural networks (ANN) [18–21] and support
vector machines (SVM) [22,23,7]. Here, the relationship between
inputs and outputs is determined through a set of linguistic rules
for fuzzy systems or training process for learning machines (ANN
and SVM). Apart from these three main approaches, little attention
was paid to random forest (RF) [24,25], which is also a machine
learning technique requiring a training phase.

These methods have the great advantage of non linear estima-
tion. A three-layer neural network is able to achieve any accuracy
of continuous function mapping [26]. However, ANN has problems
of under-fitting and over-fitting, in addition to the local optimal
solution. The SVM uses the empirical risk minimization principle,
and overcomes the problems caused by ANN [27,26], which makes
all its strength. Expert systems have the advantage of giving good
interpretability of the system [28], while the main advantage of RF
is low sensitivity to parameter values [24]. All those aspects make
these methods very powerful, but they have their limitations such
as optimal architecture and parameter tuning. These limits are
surpassed by hybridization.
2.4. Hybrid methods and metaheuristics

Metaheuristics are stochastic algorithms that try to find a suffi-
ciently good solution to a hard optimization problem, by sampling
an objective function. They include evolutionary algorithms such
as genetic algorithms (GA) and differential evolution (DE), as well
as particle swarm optimization (PSO), ant colony (AC) and simu-
lated annealing (SA). They are commonly used to tune ANN and
SVM parameters or for training purpose. In a similar manner, signal
processing techniques, especially wavelet transform (WT), are used
in hybrid methods.

In general, almost all recent forecast techniques are combina-
tions of the three main approaches and their derivatives, or
hybridization with metaheuristics or signal processing techniques.
For example, some derivatives of ANN are spiking [1], abductive
[29], structural [30], Elman recursive [31] and generalized neural
networks [32]. ANN may be hybridized with exponential smooth-
ing [33], grey theory [34], wavelet transform [35,36] or evolution-
ary algorithms [37]. A class of ANN called self organizing map
(SOM) or Kohonen network is also elaborated [28]. This wide range
of applications makes the ANN the most commonly used method
for load forecast. Likewise, SVM may be used along with ant colony
[38], particle swarm [39], adaptive neuro fuzzy inference system
(ANFIS) [40] and wavelet transform [41,3]. Fuzzy systems may also
be combined with evolutionary algorithms [42–44]. Exponential
smoothing, despite not among intelligent methods, may be com-
bined with WT and achieve results as accurate as other hybrid
methods [45].

Hybrid methods that combine artificial intelligence and
metaheuristic optimization are the most effective and accurate
approaches according to many researchers. Nevertheless, limita-
tions always exist, such as consuming time and resources, varying
accuracy according to the context and available data.
2.5. Medium and long term approaches

For longer time horizon forecast, literature is scarcer. The
majority of researchers utilize hybrid ANN for both medium term
[46,47,27,48] and long term [49,50]. Here, the factors driving elec-
tricity consumption are significantly different, such as electricity
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tariff, manufacturing value added, prevailing fuel prices, the
number of employees [51].
3. Mathematical preliminaries

3.1. Decision tree

A decision tree, or classification and regression tree (CART) is a
statistical model for solving classification and regression problems
[52]. It describes the different classes or values that an output may
take in terms of a set of input features. In general, a tree is a set of
nodes and edges organized according to a hierarchy with no loops.
A decision tree is a tree where each split node stores a test function
to be applied to the incoming data. The final nodes are called leaves
of the tree. Each leaf stores the final test result, or answer. The tree
is binary if each internal node has exactly two outgoing edges;
called left child and right child. Obviously, prediction is a regres-
sion problem. In the case of load forecast, if load is function of max-
imum temperature, day type and season, it is possible to construct
as an example the regression tree of Fig. 1. The decision tree is
robust, immune to irrelevant inputs and provides a good
interpretability.

The remainder of this section is then valid only for regression
problems. Let’s call X the input vector containing p features, Y
the output scalar or label and Sn a training sample of n observations
ðXi;YiÞ.

Sn ¼ fðX1;Y1Þ; . . . ; ðXn;YnÞg; X 2 Rp; Y 2 R ð1Þ

The decision tree needs training and testing phases. During
training, an algorithm is driving the inputs split at each node, so
that parameters of split functions are optimized to fit the training
test Sn. The principle is to split recursively the input space X by
searching optimal sub-partitions. More precisely, the first step of
the CART algorithm consists in splitting at best the root into two
different child nodes according to:

fX j < dg [ fX j > dg ð2Þ

where j 2 f1; . . . ;pg and d 2 R. To select the best split, the couple
ðj;dÞ should minimize a cost function, which is generally the vari-
ance of child nodes. The variance of a node t is defined as:

VarðtÞ ¼
X
i:Xi2t

ðYi � �YtÞ
2 ð3Þ

where �Yt is the mean of observations Yi present at the node t. Then,
the child nodes are also divided according to the same procedure.
The expansion of the tree is stopped by a termination criterion. It
is common to stop the tree when a maximum number of levels
Fig. 1. Regression tree.
has been reached, or when a node contains less that a defined num-
ber of observations. At the end of the training, a prediction function

ĥðX; SnÞ is constructed over Sn.

The testing process determines an estimation bY 0 of the output Y 0

corresponding to any unknown new input X 0 using the constructed

ĥðX; SnÞ.bY 0 ¼ ĥðX0; SnÞ ð4Þ
Starting from the root, each split node applies its associated

split function to X0. Depending on the result of the binary test
the data is sent to the right or left child. This process is repeated
until the data point reaches a leaf node.

3.2. Random forest

The random forest (RF) is an ensemble method that combines
the prediction of many decision trees [53]. The main principle is
called bagging; where a sample of size n from the training set Sn

is selected randomly and fitted to a regression tree. This sample
is called bootstrap, and is chosen with replacement, i.e. the same
observations ðXi;YiÞ may appear many times.

A bootstrap sample is get by selecting randomly n observations
with replacement from Sn , each observation has the probability of
1=n to be selected. The independent identically distributed random
variables Hl represent this random selection. The bagging algo-
rithm selects several bootstrap samples ðSH1

n ; . . . ; SHq
n Þ , applies the

CART algorithm to them to get a collection of q predicting trees

ðĥðX; SH1
n Þ; . . . ; ĥðX; SHq

n ÞÞ, and then aggregates the output of all these
predictors.

In addition to bagging, to split a node, only a predefined number
mtry of the p features are selected, and the RF algorithm tries to
find the best cutting among only the mtry selected features. The
selection at each node is uniform, thus each feature has the prob-
ability of 1=p to be selected. The number mtry is the same for all
trees, and it is recommended to be the square root of the features
number p.

mtry ¼
ffiffiffi
p
p
b c ð5Þ

The remainder is the same as the CART algorithm, the best ðj; dÞ
couple for cutting is set by minimizing a cost function, and the pro-
cedure continues until all the trees are fully developed.

The aggregation is made by averaging the output of all trees.

Hence, the output estimation Ŷ 0 of any unknown new input X0 is:

bY 0 ¼ 1
q

Xq

l¼1

ĥðX 0; SHl
n Þ ð6Þ

The main advantage of bootstrap aggregation is immunity to
noise, since it generates uncorrelated trees through different train-
ing sets. A weak predictor (regression tree) may be sensitive to
noise, while the average of many uncorrelated trees is not. The
selection of a random subset of features at each split has the same
purpose of de-correlating trees.

Two main features characterize the random forest: the
out-of-bag error ðOOBEÞ and the measure of variable importance.
The OOBE , or generalization error, is a kind of internal cross vali-
dation; it is the mean prediction error of first-seen observations,
i.e. using only the trees that did not see them while training.
More explicitly, for each observation ðXi;YiÞ of Sn, an estimationbY i of Yi is made by aggregating only the trees constructed over
bootstrap samples not containing ðXi;YiÞ. The OOBE is very useful
to estimate the generalization ability of the constructed model.

OOBE ¼ 1
n

Xn

i¼1

ðYi � bY iÞ
2

ð7Þ



Fig. 2. Load profile.
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The measure of variable importance is computed by permuting
a feature and averaging the difference in OOBE before and after
permutation over all trees. Let’s consider a bootstrap sample SHl

n

and its associated OBBl, i.e. the set of observations not included
in SHl

n . Let’s then compute the OBBEl of the tree constructed from

SHl
n . For a fixed j among the p features, the values of the jth variable

are permuted randomly over OBBl to get a disturbed sample calledgOOBl. The new gOOBEl of the disturbed sample is then computed.
These operations are repeated for each bootstrap sample SHl

n . The

importance of the jth feature, denoted VIðX jÞ is defined by the dif-
ference between the mean errors of disturbed and original OBBl.
VIðX jÞ ¼ 1
q

Xq

l¼1

ð gOOBEl � OBBElÞ ð8Þ

Hence, if the random permutations of the jth feature generate
an increase of error, the feature is important. The greater is the

score VIðX jÞ , the more important is the feature X j. In the remainder
of the paper, the number of trees q is denoted ntree.
4. Methodology

4.1. Load profile analysis

The load signal is a complex time series driven by many factors.
It presents some periodic behavior with a general trend. The gen-
eral trend is observed through the yearly demand increase, obvious
in Fig. 2(a). This increase is due to urbanization, population growth,
trade of electrical household appliances and so on. Periodic behav-
ior, or seasonality, appears at different levels. At the season level,
there is a spectacular rise every summer because of heat waves.
At daily basis, the curves are similar for working days, from
Monday to Friday. Saturday and Sunday have their own behavior,
as shown in Fig. 2(b). Holidays are a bit particular; they are similar
to Sundays except for some religious holidays especially in sum-
mer. In fact, the curve shape is closely related to Tunisian culture.

By analyzing Fig. 2(c), it is possible to distinguish the rise
between 6 and 8 am, which corresponds to the beginning of work.
Then, there is a stabilization of demand except for summer, where
a flat peak appears due to excessive air conditioning. Finally comes
the evening peak, which is lagged according to seasons and day



Fig. 3. Autocorrelation plot of the load signal.

Fig. 4. Learning process.
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length. This is the regular behavior of working days for many years.
Fig. 2(d) shows the evolution of average daily load in terms of max-
imum temperature and day type, through extrapolation surface fit-
ting. Clearly, in the case of Tunisia and hot countries, high
temperature entails high demand. Also, the day type is of great
importance in determining the load behavior.

Apart from mentioned factors, rare events may occur and dis-
turb load, such as political troubles, blackouts or very hot days.
In this case, the proposed model may misbehave, and an expert
adjust may be needed.
4.2. Choice of model inputs

The autocorrelation plot of Fig. 3 is used to detect the similarity
between the signal and its lagged versions, in order to detect the
most influencing past samples on the future load. Obviously, the
load values at the same hour of the previous days (lag of 24 h) have
the greatest similarities. This plot pushes towards constructing a
model for each hour of the day, i.e. 24 models, instead of using
one model called recursively 24 times, which may lead to growing
error. Thus, the load values of the two previous days at the same
hour are chosen as inputs for the predictor, as well as morning
and evening peaks of the previous day. Concerning external factors,
month number, day type, maximum and minimum temperature of
the predicted day are chosen. Table 1 summaries all the chosen
Table 1
Chosen inputs of the model.

Type Input Range

Exogenous and relative to the
predicted day

1. Month number 1 � � � 12
2. Day type 1000 (Mond

(Holiday)
3. Minimum temperature 2 � � � 29 �C
4. Maximum temperature 7 � � � 43 �C

Endogenous and relative to previous
days

5. Morning peak of the
previous day

0 � � � 4000 M

6. Evening peak of the
previous day

0 � � � 4000 M

7. Load before 24 h 0 � � � 4000 M
8. Load before 48 h 0 � � � 4000 M
features, their types, ranges, correlations with the output and
importance for the year 2013. The variable importance is com-
puted according to Eq. (8), as explained in Section 3.2.

Some inputs are poorly correlated with the output, or have
weak variable importance, such as input 1, so they can be safely
removed. However, they are maintained to prove the machine
immunity to irrelevant inputs. Also, it is important to mention that
temperatures of the predicted day are measured in this work, since
both training and testing sets are from historical data. But in real
cases, temperatures are also forecasted, and a bad forecast entails
misbehavior of the predictor. Some researchers did temperature
forecast along with load [1]. But in general, the models that include
temperature rely on the weather forecast service.

4.3. Adopted strategy and expert selection

The learning process of the machine is online, as shown in Fig. 4.
This means that in each new day of the testing period, the training
period is growing, so that the real load values of the previous day
will be considered in the learning for the next forecast. This is use-
ful to overcome brutal changes in load especially between seasons.
Contrariwise, an offline learning means that training is achieved
only one time before testing, thus the training period is fixed.

The flowchart of Fig. 5 details the adopted forecast strategy.
Two embedded loops represent hourly and daily forecast routines.
Train and test phases are achieved using the random forest original
code [54]. Selection of train/test sets is of critical importance, since
it allows modifying the endogenous inputs of Table 1 according to
the case, through a set of linguistic if–then rules. For example, for
Correlation with
output

Variable importance
(�106)

0.1671 0.2186
ay) � � � 7000 (Sunday) > 8000 �0.4663 6.7462

0.5289 0.5306
0.5453 1.2864

W 0.7858 7.1279

W 0.5446 2.4659

W 0.7741 (at 10 am) 7.8397 (at 10 am)
W 0.6364 (at 10 am) 1.8203 (at 10 am)



Fig. 5. Flowchart of the prediction strategy.
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Mondays, inputs 7 and 8 are from Friday and Thursday, for both
train and test sets. Likewise, inputs 5 and 6 are from Friday.
Without this adjust, Monday load will be always underestimated,
since it will be influenced by Sunday low demand. Same thing is
done for Tuesday. However, linking Saturday and Sunday with pre-
vious Saturday and Sunday does not result in any improvement,
since the load transition from Friday to Sunday is a bit smooth,
not like Sunday to Monday transition, which is brutal. These tran-
sitions are obvious in Fig. 6(d). In addition, the huge jump in days
indexes from Sunday (7000) to Monday (1000) justifies the need
for correcting Mondays and Tuesdays, while Saturdays and
Sundays do not have this problem. This adjust is like research for
similar days or feature selection elaborated by many researchers,
but it is not automated, thus there is no distance to minimize.
However, it needs an expert opinion. The advantage here is that
the user of the model can select its own rules, relative to his coun-
try or whatever. It is possible for example to add this rule for warm
countries: if temperature >35 �C, then inputs 7 and 8 are taken
from a historical very hot day. This custom adjustment allows
more flexibility and improves the generalization ability of the pro-
posed model.

5. Case study

5.1. Results

The data used in this research are provided by the Tunisian
Company of Electricity and Gas, as half-hourly load demand of
the whole country from 1 January 2009 to 31 August 2014. The
data preprocessing includes hourly sampling and replacing missing
or incorrect values by previous ones. No normalization is applied,
so the data remain in raw format and real ranges. Special days such
as holidays are intentionally maintained so that the machine can
learn their behavior. Some contingencies such as blackouts and
political troubles are also maintained for testing, to determine
when it is possible to improve prediction and when it is not.
Concerning the RF machine configuration, the number of trees
ntree is the default 500, while the number of variables mtry to split
at each node is equal to 4. Generally, these parameters do not have
remarkable impact on accuracy, and this is the strong point of ran-
dom forest. It is recommended though that mtry follows Eq. (5),
while 500 trees are enough to get satisfactory results.

To predict the week from 21 to 27 October 2013, an initial train-
ing period is fixed from 1 January to 20 October 2013, and then
begins expansion following the strategy explained in Section 4.3.
To predict 20–26 January 2014, the training period is extended to
19 January and so on. So the initial training set is always from 1
January 2013 to the day before the beginning of the test, and the
testing set is one week. The training set, following the online learn-
ing process, is growing every day to take into account the real load
of the previous day. The predictor did not see the testing data
before test, because the expansion is done after prediction, so the
test is performed for first-seen data. Both training and testing sets
contain the eight features of Table 1. There is no rule for choosing
learning period, but it should be long enough to cover all seasons.
However, very long period may degrade the results, not to mention
excessive simulation time. In fact, very old load samples are quite
different from actual ones, and this is due to long term effects not
included in the model. The simulation results show very accurate
prediction from Monday to Sunday for the four seasons, given in



Fig. 6. Forecast results.

Table 2
Forecast errors.

Fall 2013 21–27 October Winter 2014 20–26 January Spring 2014 14–20 April Summer 2014 7–13 July

Monday 2.9573 1.7651 1.0019 4.2302
Tuesday 2.0358 2.3948 1.5630 2.3781
Wednesday 1.0339 1.1314 1.7281 2.2637
Thursday 1.0388 1.8062 1.1029 1.8342
Friday 1.1931 1.3294 1.3353 2.1097
Saturday 1.9190 1.2111 2.7520 4.2180
Sunday 3.7984 1.2074 2.5791 1.7955
Average 1.9966 1.5493 1.7232 2.6899

Holiday 5 November 2.3962 13/14 January 4.2686/3.7361 1 May 1.9130 25 July 3.6064
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Fig. 6. Nevertheless, summer prediction has some difficulties com-
pared to others.

To assess further the quality of prediction, the test is performed
for a half-year, from 1 January to 30 June 2014. The average
obtained MAPE is 2.24%, excepting holidays which are studied
apart. A special forecast is performed for holidays in the four sea-
sons. In this case, prediction is of lower quality, especially when
there is succession of holidays such as the case of 13 and 14
January. Religious holidays like El-Moulid (13 January) are moving
throughout the year following the lunar calendar, and this fact
makes the prediction harder. To quantify the results numerically,
the well-known mean absolute percentage error (MAPE) is chosen
as evaluation criterion.

MAPE ¼ 1
24

X23

h¼0

jLðhÞ � bLðhÞj
LðhÞ

 !
� 100 ð9Þ



A. Lahouar, J. Ben Hadj Slama / Energy Conversion and Management 103 (2015) 1040–1051 1047
LðhÞ stands for the actual load at hour h, while bLðhÞ represents
the predicted load value. The MAPE of the predicted days as well
as the average MAPE are given in Table 2.

5.2. Improvements

Even if results seem to be accurate, some unexpected events
may occur and cause unusual behavior, as illustrated in Fig. 7.
For example, the holiday of Aid Al-Fitr (religious holiday) in 2014
was in the summer, and people do not behave the same way if this
holiday was in winter, not to mention the spectacular temperature
increase in the second day. Other problem, the day before this hol-
iday was Sunday, and its own load demand was much lower than
expected, due to people preparations to celebrate; shopping, buy-
ing new clothes, gifts, etc. These preparations would not be intense
if it was not Sunday. In 31 August 2014, there was a complete
blackout in the whole country due to technical problems worsened
by the butterfly effect, an event which occurs only one time in sev-
eral years. In January 2011, the Tunisian Revolution arose, and
huge political troubles led to load demand much lower than
expected. The major problem encountered in all these cases is scar-
city, and the machine is unable to learn rare events. For example,
the distribution of daily maximum temperature shows that values
superior to 41 or inferior to 10 are very rare. Thus when tempera-
ture reaches these values, the predictor does not know how to
react.

A possible solution is to correct again the selection of train/test
sets in the flowchart. In the case of Aid Al-Fitr of 2014, this rule is
Fig. 7. Bad predictions with daily MA
added: if it is Aid Al-Fitr and temperature is superior to 35 �C, then
input 7 is taken from Aid Al-Fitr of the previous year, i.e. 8 August
2013, as shown in Fig. 8. The conditions are similar; same holiday
and it was a very hot day (42 �C). This adjustment results in the
improvement visible in Fig. 7(d), where the MAPE dropped from
8% to 5%. However, the Sunday prediction remains the same even
when linked to the previous year, since the day before the holiday
of the previous year was not Sunday. In general, it possible to add
these rules: when it is very hot, refer to a historical very hot day,
and when it is holiday, refer to the previous holiday of the same
type.
5.3. Comparison and discussion

The aim of this section is to compare the proposed model with
concurrent machine learning techniques, namely ANN and SVM,
and to assess the generalization ability trough tests on other mar-
kets. The persistence model (PER), where the prediction is literally
equal to the measure of the previous day, is added as a reference.
To ensure fair comparison, no optimization process is applied to
adjust the parameters of the three machines. But since ANN and
SVM are very sensitive to their parameters, their configuration is
derived from the default one recommended by the constructor of
the code, with slight manual adjustments to get the best of them.
The final goal is to compare these three methods without resorting
to optimization algorithms. The strategy of Fig. 5 is applied for each
of them; where they have to predict the load at hour h while given
PE and possible improvements.



Fig. 8. Refined selection of train/test sets.

1048 A. Lahouar, J. Ben Hadj Slama / Energy Conversion and Management 103 (2015) 1040–1051
the eight features of Table 1 as inputs. The proposed configurations
are as follows:

– ANN: 3 layers feed-forward network; input layer with 8 neu-
rons for the eight features, one hidden layer with 20 neurons
and one output layer with one neuron. The training algorithm
is the Levenberg–Marquardt back-propagation, with the mean
squared error as performance function. The activation function
of each neuron is the hyperbolic tangent sigmoid given in
Eq. (10).
tansigðxÞ ¼ 2
1þ e�2x

� 1 ð10Þ

– SVM: It is in fact SVR (support vector regression), type
epsilon. The kernel is polynomial of degree 1 as shown in
Eq. (11). The kernel parameter c is equal to 0.0003, r is 0
while the regularization parameter C is 10 using grid search
[55]. The termination criterion is 0.001.

Kðu; vÞ ¼ cuTv þ r ð11Þ

– RF: The same as before, ntree ¼ 500 and mtry ¼ 4.

The three machines are tested using data from the Tunisian
power system and the PJM market (Pennsylvania-New
Jersey-Maryland Interconnection) in the USA as view of compari-
son. The prediction results for 4 weeks are shown in Table 3. The
test periods are chosen so that holidays are avoided. The results
for the Tunisian system are more accurate when using the RF
predictor in most cases. The accuracy of ANN and SVM may be
improved by optimization, but this leads to other problems of
choosing the appropriate algorithm and its parameters.

The results of PJM market forecasting are less accurate due to
three main reasons. First, the PJM is deregulated and presents high
volatility. Second, there is no refinement applied to particular days
so the rules are generic (only Monday and Tuesday correction).
Third, the temperature is measured only in New York, which is
supposed to be the most consuming city. To improve the results,
the user of the model has to adjust the model according to the
JPM market characteristics; by taking the temperature information
from many locations according the coverage area, and by adding
his own rules to take into account particular days. The proposed
model in this paper shows its effectiveness when it is refined
according the citizens culture and behavior.

In general, the MAPE of day-ahead prediction is between 1% and
3% in the majority of recent researches [56,57,42,1,58,43,59].
Similar results are found in this paper, but using generic RF param-
eters without any optimization algorithm. The proposed scheme is
also suited to RF prediction since more attention is paid to organiz-
ing train/test sets with expert selection, instead of tuning the
machine parameters. The main advantage of RF over other meth-
ods is the few parameters to set. In general, choosing the default
values for the two parameters, ntree and mtry is enough to get
the best from this method. However, ANN and SVM accuracy
depends enormously on their parameters. Besides, the internal
cross validation procedure gives good generalization ability.
Compared to ANFIS and expert systems, the main advantage of



Table 3
Comparison between the different methods in terms of MAPE.

Tunisia power system PJM market

PER RF ANN SVM PER RF ANN SVM

Fall 21–27 October 2013 21–27 October 2013
Monday 10.2473 2.9573 5.9970 1.1842 11.6758 2.8623 3.9795 1.8143
Tuesday 1.4937 2.0358 3.4987 1.0261 1.2088 0.9653 2.9234 2.7147
Wednesday 1.1342 1.0339 2.2240 1.0531 3.8949 4.2642 5.0863 2.4308
Thursday 1.3563 1.0388 2.5128 0.9776 2.4319 2.9714 3.5950 3.0299
Friday 1.0737 1.1931 1.8585 1.7933 2.0794 1.9389 4.6577 2.6091
Saturday 4.5218 1.9190 3.5893 2.6264 7.7393 2.4416 4.4413 2.6219
Sunday 10.8898 3.7984 3.8425 6.8002 5.5892 3.0055 5.5879 2.1995
Average 4.3881 1.9966 3.3604 2.2087 4.9456 2.6356 4.3244 2.4886

Winter 20–26 January 2014 13–19 January 2014
Monday 12.7193 1.7651 1.8818 5.1333 8.9871 1.1432 2.2401 3.6559
Tuesday 3.6586 2.3948 2.4101 1.9979 2.5049 2.6942 5.2133 1.8779
Wednesday 1.7609 1.1314 1.4194 1.5722 5.3825 5.1880 3.0915 5.7661
Thursday 2.1357 1.8062 1.8745 3.0358 2.9150 5.8280 5.3839 4.3063
Friday 2.0410 1.3294 1.9987 2.8130 1.4735 3.4029 4.6590 4.8541
Saturday 5.4608 1.2111 1.8029 2.7589 2.8463 3.4065 5.0160 3.7134
Sunday 9.9884 1.2074 2.4129 5.2611 5.8810 1.5673 2.4824 2.0096
Average 5.3949 1.5493 1.9715 3.2246 4.2843 3.3186 4.0123 3.7405

Spring 14–20 April 2014 7–13 April 2014
Monday 10.7557 1.0019 1.9814 4.5069 10.5069 1.9821 2.8370 1.4882
Tuesday 2.7122 1.5630 2.1754 1.1834 2.6453 2.5960 4.3617 3.0996
Wednesday 1.3405 1.7281 2.4537 1.3258 2.1431 3.2794 3.7305 2.7160
Thursday 0.8667 1.1029 1.3012 1.7798 1.9861 2.8144 2.3001 1.6258
Friday 1.8373 1.3353 1.9889 1.9818 2.8596 2.1364 5.1039 3.1789
Saturday 4.6041 2.7520 4.9910 2.6412 10.6370 1.4290 2.3294 6.2736
Sunday 8.0959 2.5791 2.5934 4.3904 4.1369 4.3520 4.6895 3.9764
Average 4.3161 1.7232 2.4979 2.5442 4.9879 2.6556 3.6217 3.1941

Summer 7–13 July 2014 21–27 July 2014
Monday 13.6542 4.2302 3.3521 2.2994 15.5319 6.7983 4.1693 5.1931
Tuesday 4.1347 2.3781 2.4733 3.6409 7.3031 5.8869 3.8159 4.5301
Wednesday 5.1276 2.2637 2.6060 2.8871 3.3315 1.7904 1.5886 2.1203
Thursday 4.9159 1.8342 3.0465 2.1154 12.2722 7.5953 5.4861 9.3693
Friday 3.5551 2.1097 2.5774 1.4218 4.8534 1.3925 4.4891 4.6822
Saturday 1.7505 4.2180 3.8909 3.9019 3.6804 2.6274 4.0350 4.0649
Sunday 8.386 1.7955 2.4515 3.6495 1.8542 2.0841 2.3800 2.6695
Average 5.9320 2.6899 2.9140 2.8452 6.9752 4.0250 3.7091 4.6614
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RF is the ability to handle huge training sets, which is complicated
when using fuzzy if–then rules. The expert feature selection is the
main contribution over previous RF forecast works, where the
refined train and test sets make the prediction more flexible.
Other novelties are also added, such as choosing inputs by analyz-
ing the autocorrelation function and the measure of importance
(Table 1) in addition to the online learning process.

6. Conclusion

This paper proposes a model to predict the electrical load
demand of day-ahead, by a step of one hour. The random forest,
which is among machine learning techniques, is chosen to con-
struct the model. Characterized by immunity to parameters
change, internal cross validation and proper variable importance
measure, the random forest predictor has 24 versions for the
24 h, and an expert selection is performed to refine inputs. An
online process drives the forecast procedure over the entire test
period, in order to overcome sudden load variations. After analyz-
ing the market conditions and the load profile, results are given in
the four seasons, for regular working days and for holidays. The
error, exceeding rarely an average of 2.3%, reflects the accuracy
of the approach. The procedure of selecting train and test inputs
through if–then rules also proves its efficiency and ability to be
adjusted according to the country culture or market specificity.
The RF coupled with expert selection is able to capture complex
load behavior and solve some special cases that are specific to cul-
ture, high temperature, religious events and moving holidays
thanks to appropriate choice of inputs.
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