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Abstract—The electricity markets all over the world have
received several changes since the arrival of smart meters,
real time pricing and deregulation waves. In such conditions,
electricity price is a key index that reflects competition be-
tween generators, percentage of renewable generation and load
behavior. An accurate forecast of the future price allows both
producers and customers to plan their strategies, increase their
profits and avoid contingencies. For this purpose, this paper
proposes two predictors that perform half-hour-ahead and day-
ahead price forecast, respectively. Both predictors are based
on three learning machines, namely artificial neural network,
support vector regression and random forest, in addition to
persistence model which is used as reference. The built models
are tested through real historical time series from New South
Wales in Australia, which include half-hourly price and load. The
profiles are analyzed with the aim of defining correlations and
choosing adequate inputs. Then, the performance of each machine
is assessed using the mean absolute percentage error, in order
to determine the most suitable prediction machine according to
the case. Furthermore, the best forecast situations are plotted to
evaluate the ability of predicting sudden and sharp price peaks.

Keywords—Short term price forecasting, artificial intelligence,
day-ahead market, deregulation.

I. INTRODUCTION

With deregulation of energy markets, the electricity price
becomes a very important issue. The main goal of deregulation
is to maximize effective generation and reduce costs at the
same time. With the introduction of smart meters and real time
pricing, the notion of demand response (DR) appeared. DR
means changing the consuming patterns of end-user customers
willingly to match peak-off and low-cost periods. The effective
demand response depends on the ability of forecasting load and
renewable generation from supplier side, and forecasting prices
from market and clients side. In general, this forecast must be
done for short times intervals in advance, up to an hour or a
half-hour or even 5 minutes in some markets. These intervals
are shortened because the price profile is highly volatile and
non-smooth, as a consequence of interactions between price,
load and penetration degree of renewable generation. The price
profile has a strongly seasonal nature, and is correlated to the
load to some extent [1]. Generally speaking, forecasting load
and price in wholesale markets are intertwined tasks. Both
producers and customers rely on price predictions to prepare
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their strategies. Load depends essentially on meteorological
factors, while price is driven specially by load, even if some
other market factors have also their impact on electricity price
behavior; such as economic growth and fuel prices. However,
load curves have similar patterns, whereas price curves are
very volatile and spike-prone. The price in particular, may
jump to tens or hundreds of times its normal value for very
short periods, as it may also drops to zero or even negatives
values. In such conditions, forecasting prices along with load
is crucial, since it allows producers as well as customers to
optimize their affairs [2].

The role of an organized market is to match electricity offer
and demand in a way to determine the market clearing price
(MCP). The MCP is generally determined once a day by an
auction sale, as the intersection between the curve of offer and
demand. The negative prices are authorized in many markets,
generally when the demand is very low (losses due to shutting
down a production unit may be greater than losses caused by
accepting negative prices) or when renewable generation is
very high. In day-ahead markets, offers are submitted for each
hour (or half-hour) of the next day. Some markets follow a
real time settlement structure. In such system, prices are fixed
by the system operator every 5 minutes, and spot prices are
determined every half-hour. This structure makes the market
very volatile, and this the case of the Australian market, subject
of this study. The electricity price depends on several factors
such as system load, weather conditions, fuel prices, spinning
reserve (available production minus expected load), planned
maintenance and forced cut-off of important grid components.
The historical time series of all these factors as well as their
expected future values for the considered forecast horizon are
very important for the construction and calibration of price
predictors [3].

The different approaches proposed by the literature are:

- Multi-agents models: they are models that simulate the
operation of heterogeneous agent system (generating units,
companies) interacting with each other, in order to build the
price process by matching offer and demand in the market.
They are production-cost based and well adapted to regulated
markets with little incertitude and stable structure.

- Fundamental models (structural): they describe the price
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dynamic by modeling the impact of important physical and
economic factors on it.

- Reduced-form models (quantitative, stochastic): they
characterize the statistic properties of price over time, with
the ultimate goal of risk management.

- Statistic models (econometric): they are direct applica-
tions of statistic techniques of load or energy forecast, thus
implementations of econometric models.

- Computing intelligence (artificial learning, nonlinear
statistics): they are techniques combining elements of learning,
evolution and fuzzy logic to create approaches adapted to
complex dynamic systems [3].

The two last families of models (statistics and artificial
intelligence) are generally established by electrical engineer-
ing researches; since they are considered signal processing
techniques. Contrariwise, the three first families are especially
utilized in economics reviews. To establish a fair comparative
study between different methods, it is essential to use the same
data sets and the same evaluation criteria.

High frequency, non-stationarity, multiple seasonality, cal-
endar effect, high volatility, spikiness and nonlinearity make
the accurate forecast a real challenge. Several techniques are
developed to forecast electricity prices, like artificial neural
networks (ANN) and their derivatives, support vector regres-
sion (SVR), hidden Markov models, autoregressive integrated
moving average (ARIMA), generalized autoregressive condi-
tional heteroskedasticity (GARCH), linear regression, Kalman
filter and regression tree [4], [5]. Recently, the empirical mode
decomposition has been used as a promising alternative [6],
[7]. In this paper, three of most effective learning machines
are chosen to construct the predictors, namely ANN, SVR
and the random forest (RF), in order to compare their abilities
under the same conditions and facing the same inputs, with no
optimizations. The signal to be predicted is the electricity price
from New South Wales in Australia, for a forecast horizon
of half-hour and 24 hours, respectively. The remainder of
the paper is organized as follows: section II defines some
mathematical notations, section III presents the Australian
energy market, section IV analyzes the price and load profiles,
section V details the forecast strategy and interprets the results,
and section VI concludes the study.

II. MATHEMATICAL DEVELOPMENT

The forecast problem is presented as follows. Let F' be the
prediction model where X = (X', ..., X™) are its m inputs
and Y is its output.

Y =F(X), XeR™ Y eR 1)

We denote Y the real (measured) value of the predicted
signa, Y € R. X, Y and Y are in terms of time ¢,
which is discrete and hourly stepped. Predicting half-hour
in advance for example means determining Y (¢t + 1/2). Let
Sn = {(X1,X1), ..., (Xn,X,)} be the training set used
to create the predictor F' from n observations (X;,Y;). Of
course, X; and Y; are past samples of X and Y. Let s
be the length of forecast horizon in hours. For day-ahead

prediction by half-hour steps, the problem is to determine
Y(t+1/2),Y(t+1),...Y(t+s) where s = 24.

_ Each predicting machine including persistence should give
Y, most cases in terms of X. For half-hour persistence for
example, Y (¢ + 1/2) = Y (¢). The development of the other
machines is not presented for the purpose of brevity. See
reference [8] for ANN development, [9], [10] for SVR and
[11], [12] for RF. The proposed error evaluation criterion is
mean absolute percentage error (MAPE). Let £ = Y — Y
be the error signal, where E(t) is the error at time ¢t. We
assume getting k errors (samples of E(t)) after performing (3
predictions (the relationship between k and § will be presented
later in section V). The MAPE is then defined by:

E()]
Y(t)

k
1
MAPE = — x 100 2
- ; )
The MAPE criterion is one of the most used in literature. It

gives good quantitative interpretation of the prediction as long
as Y'(t) is far away from zero.

III. PRESENTATION OF AUSTRALIAN ENERGY MARKET

The Australian Energy Market Operator (AEMO) has been
created to manage electricity and gas markets since 1% July
2009. Since the beginning and the middle of the Nineties, the
deregulation and privatization of state assets have conducted to
markets more open and transparent, thereby facilitating trade
and concurrence.

Since 1998, the production, distribution and supply of
electricity in eastern and southern Australia have been led by
the National Electricity Market (NEM). The NEM connects
five regional markets (Queensland, New South Wales, Victoria,
Southern Australia and Tasmania). It ensures also wholesale
electricity production which is carried through high voltage
transmission lines to distributors, and then to houses and
companies.

The transport of electricity from all producers to all con-
sumers is facilitated through a pool, in which the production
of all generators is aggregated and programmed at intervals of
five minutes in order to respond to demand. The pool is not a
physical thing, but a set of procedures that the AEMO manages
in conformity with the law and national electricity regulation.
The market makes use of sophisticated systems to send signals
to producers informing them how match energy they must
produce every five minutes. This information is mandatory
to adapt production to consumers requirements, maintain the
reserves ready to contingencies and calculate the actual price.
The NEM contains both state and private assets managed by
several participants.

IV. PROFILE ANALYSIS

The restructuring and deregulation of Australian electricity
markets entailed major changes in wholesale price behavior.
These prices are always characterized by high volatility (high
variance), a strong return to the mean (prices have tendency to
fluctuate around a balance point in the long term), and sudden
and expected spikes or peaks which disintegrate rapidly. In
fact, they reflect the inherent features of competitive electricity
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markets; such as seasonality, low marginal cost of produc-
tion, impact of failure or system breakdown, interconnection
constraints between markets, limited storage and so on. As a
consequence, the major participants at these markets, including
generators, retailers and big industrial consumers, are exposed
to significant market risks and are obliged to take costly
measures of risk management [13].

The New South Wales is one of the five markets managed
by the AEMO, and is the subject of this study. The load and
price profile of this market during three days of March 2013
are given in Fig. 1.
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Fig. 1. Load and price profile, 1-3 March 2013, New South Wales

The load profile is more or less regular, it is possible to
distinguish vaguely through the curve the two consumption
peaks of morning and evening, and the drop after midnight.
Variations are smooth and progressive. However, the price
profile is much more chaotic; variations are sharp and almost
random, and yet correlation with load remains visible with
the noticeable price drop at the first hours of the morning.
Generally speaking, it is not possible to explain all the price
variations without taking into account pricing procedures and
regulation, hence the price predictor may be much more
accurate when it is refined according the market characteristics.

The Fig. 2 shows the same curves in three days of July
2013. Likewise, the load curve contains two peaks at morning
and evening, clearly more visible. However, price is further
more tough to predict; in a way that it keeps nearly constant
value for long periods, but peaks are spectacular and very
sharp when they occur. These peaks are generally accompanied
by steep slope or tendency change in the load curve. A
possible reason is that prices are intentionally increased during
transitions in order to discourage consumers and give the
generators enough time to start or stop. The season effect
should not be neglected too, since July is winter in Australia,
and the consumers need for warm may be the main reason of
this complex profile.

V. PRICE FORECAST

Since much specific information are not included in this
study, such as Australian production plants, pricing proce-
dure, dominant weather, population distribution and customers
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Fig. 2. Load and price profile, 1-3 July 2013, New South Wales

behavior, prediction will be blindly performed; aiming only
to assess the performance of learning machines, regardless
of all these exogenous factors that may affect the forecast
accuracy. The main goal is hence to compare effectiveness of
the machines operating under the same conditions and handling
the same data sets.

A. Half-hour-ahead price forecast

In this section, prediction will be performed for a horizon
of half-hour in advance, thus very short term (s = 1/2). The
time step is also a half-hour. In order to construct the predictor,
inputs are classified; endogenous and exogenous. Endogenous
inputs are internal, which means historical price time series.
In other words, past price values that may affect future ones.
Contrariwise, exogenous inputs are external, meaning any
signal that may affect the price evolution, except the price
signal itself. The chosen inputs are as follows: three past values
of price taken every half-hour (endogenous), and four inputs
of load; three past values and one future value also taken
every half-hour (exogenous). No other endogenous factors are
considered like temperature or fuel price despite their potential
influence, in order to simplify the model design. In addition,
the future value of load (of half-hour-ahead, which is used as
input) is assumed to be exact and performed through another
predictor, to avoid adding uncertainties. The price of half-hour-
ahead will then be in terms of this future load value, 3 past load
values, and 3 past price values, resulting in a total number of
inputs equal to 7 (m = 7). The Fig. 3 shows the designed
predictor with its different inputs. The prediction model is
written through these equations:

X, = [L(t—i—;) L (t) L(t—é) L(t—l)} 3)

Xp = [P(t) P<t;> P(tl)] )

X (t + ;) =[x Xp])" (5)

Y(t) = P(t) = X°(t) (6)
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Fig. 3. The half-hour-ahead price predictor model

L(t) stands for load and P(t) stands for price at hour ¢.
Then P(t+ 1/2) is the future price (of half-hour-ahead), P(¢)
is the actual price, P(t — 1/2) is a past price (of half-hour
ago) and P(t — 1) is a past price (of hour ago). Same thing
for the load L.

It is interesting to view the response of the persistence
model before proceeding to other predictors. This model, in
which the predicted value is simply equal to the actual one,
is a reference for short-term prediction methods. The designed
predictor must perform a better forecast than the persistence,
otherwise is is useless. The calculated MAPE of persistent
forecast is given in Table I, and obviously, it is rather low,
about 2.6%. The challenge for other models is then to perform
further more accurate forecast.

Persistence ANN SVR RF
Half-hour-ahead March 2.63% 2.25% 2.21% 2.38%
Half-hour-ahead July 7.61% 5.39% 5.45%
Day-ahead March 5.32% 11.23% | 3.80% | 4.11%
Day-ahead July 7.51% 10.24% | 5.68% | 5.72%

TABLE 1. THE MAPE RESULTS FOR ALL PREDICTION CASES

January and February 2013 are chosen for training for all
predicting machines. Offline training is enough, since the test
period is short; only the first three days of March 2013. The
number of observations in the training test is n = 2829, the
number of predictions 8 = 144 and the overall number of
errors k = (. No optimization process is proposed to ensure
fair comparison; hence the machines settings are empirical and
manual. The proposed configurations are as follows:

- The random forest has ntree = 500 and mtry = 2.

- The support vector regression owns a polynomial kernel
of degree 1, C'=10 and v = 3.10~*.

- The artificial neural network has feedforward architecture,
with one hidden layer of 20 neurons, unipolar sigmoid activa-
tion function and Levenberg-Marquardt training algorithm.

After testing and checking the results of Table I, we notice
that the error reduction is minimal; it does not even fall under
the barrier of 2%.

In order to get more accurate results, the training test is
widened; it contains henceforth 6 months, from January to
July 2013. The testing period covers the three first days of
July. As a consequence, n = 8685, § = 144 and k = £.
The profile is a bit different, as explained in the previous
section. The persistence model entailed rather high error, due
the spectacular price spikes. The other machines keep their
configurations. The RF reduces the MAPE of more than 2%,
as well as the ANN. However, the SVR does not converge
anymore with its actual configuration, since the number of
observations n became very high. The predicted curve has a
more intelligent behavior with RF and ANN, and does not
follow by rote the measured curve anymore, like it was the
case with persistent forecast. The ANN succeeded to predict
effectively the peaks many times, and gave the best results in
predicting half-hour-ahead prices, as shown in Fig. 4.
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Fig. 4. Half-hour-ahead price prediction using ANN, 1 to 3 July 2013, New
South Wales

B. Day-ahead price forecast

In order to predict 24 hours in advance, it is enough to build
2s instances of the previous model, dedicated to predict half-
hour-ahead, where s = 24. Then 48 models will be constructed
and called for this purpose. Fig. 5 describes the architecture of
each model, and the inputs are the same (m = 7). Obviously,
such a procedure needs a prior knowledge of 48 load values
in advance (day-ahead), which is assumed to be exact and
gathered through another predictor. The equations are the

following:
X.; = {L<t+z) L(t+l48>] 8)
2 2
i — 96
XL2—|:L<t+ 5 > L(t+ 5
4
Xp, = [P<t+’ 5 8) P<t+
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Xpo = [P (t+ i_2144)] (11)
X (t+ ;) =[Xr; X2 Xp; XPQ}T (12)
Y(t) = P(t) = X°(t) fori=2s (13)

) r(x(ey) e

Where ¢ = 1,2,3, ..., 2s.
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Fig. 5. The day-ahead price predictor model

This strategy was applied using the same methods of previ-
ous section, namely persistence, RF, ANN and SVR. Learning
and test sets are also the same; January and February for
training, and three days of March for testing. Obviously, each
model among the 48 has its own training set S,,, with n = 56
and 5 = 3. The overall number of errors is k = 255 = 144.
The persistence in this case is a shift of all the previous day,
and not just a shift of the previous half-hour.

The first conclusion that can be made after seeing the
results of Table I is that ANN is not suitable at all for this
kind of forecast; it is even worse than persistence. This may
be due to stochastic training procedure of ANN, which makes
the 48 built models very different. However, RF and ANN
improve noticeably the persistence model, even if the MAPE
remains high. As regards the July results with widened training
set, there is no big difference. For each model among the
48, n = 178. The 3 days testing period give 5 = 3 and
k = 2.s5. = 144. Obviously, the enlargement of the training
period gave more accurate results (compared to persistence).
The SVR has slightly lower MAPE than RF, but RF is more
able to predict sudden peaks, as shown in Fig. 6. The forecast
error in literature varies enormously according to market
specifications. But in general, it is between 3% and 14% in
terms of MAPE [5], [14]. The results found in this paper are
sufficiently acceptable, taking into account the high volatility
of the Australian market.

VI. CONCLUSION

In this paper, electricity price forecast was proposed in a
deregulated market, where a real time pricing procedure is
applied, for two different time scales. Since the research ten-
dency moves toward artificial intelligence methods, three of the
most effective learning machine are proposed, namely artificial
neural networks, support vector regression and random forest.
After presenting the market specification, the price profile is
analyzed along with load, in order to detect correlations and
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Day-ahead price prediction using RF, 1 to 3 July 2013, New South

define suitable model inputs. Then, two predictors are designed
for half-hour and day-ahead forecast respectively, based on
the three proposed machines. All the responses are assessed
and compared with persistence forecast, in order to determine
the most effective machine for each context. Results show
that ANN performs the most accurate results for half-hour-
ahead, whereas RF is the most effective for day-ahead forecast,
especially for detecting spikes. The SVR may give lower errors
than RF in that case, but may also have technical problems of
convergence. Obviously, this comparison does not include any
optimization process, hence the prospect of this work is to
compare optimized methods using the same model and inputs,
and conclude about the effectiveness of each optimization
process.
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